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Abstract

We examine project selection decisions of firms constrained in the number of projects

they can handle at once. A new project opportunity arises every period. Taking on a

project requires a commitment of uncertain duration, preventing the firm from select-

ing another project in subsequent periods until the commitment ends. In our dynamic

game, when two firms are free of commitment, they move sequentially in random or-

der. Symmetric pure strategy Markov perfect equilibria always exist. In equilibrium,

the first mover strategically rejects some projects that are then selected by the second

mover, even when the value of the project is the same for both firms. A monopo-

list rejects more projects, and adopts ones of higher average quality compared to the

duopolist. Duopolists select too few projects compared to their jointly optimal behav-

ior. We extend the model to allow for externalities, asymmetry, and n > 2 firms.
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1 Introduction

1.1 Motivation

Firms, researchers and government agencies repeatedly select projects (e.g., research and

development projects, clients to serve, acquisition of start-ups, and new products). In many

situations, firms are constrained in the number of projects they can work on at once, and

projects can last for a number of periods. Committing limited resources (e.g., researchers’

and other skilled employees’time, physical space, lab equipment) to one project may result

in the need to forgo future, perhaps more profitable opportunities. In a strategic environ-

ment, firms compete for projects; one firm’s decision to select a project can affect its rival’s

opportunities at present because the selected project is no longer available, and in the future,

because the firm commits its resources. In this paper, we study project selection of strategic

firms that face uncertainty about the duration of the project to which they commit and

about the value of future projects.

We analyze a dynamic, discrete time, infinite horizon game. Every period, a new project

opportunity arises and perishes if it was not selected. Firms learn the expected return of

the current project, and know the distribution from which future project returns are drawn.

Random project duration is captured by a fixed probability that commitment will end and

free the firm to select a new project in the following period. When two competing firms are

free of commitment, we assume they consider projects sequentially (and the decision not to

select a project is irreversible). A period’s leader– the first firm to consider the project– is

chosen at random. The period’s follower can select the project only if the leader did not.

Sequential project selection decisions occur in some markets. For example, pharmaceu-

tical companies repeatedly face project opportunities presented by small biotech firms who

negotiate with the pharmaceutical companies sequentially;1 Editors of competing journals

choosing which submissions to accept for publication are approached by authors sequentially;

Service providers (e.g., consulting firms, contingent fee lawyers, contractors) are sequentially

1See, for example, Kolchinsky (2004) page 56 on negotiation agreements, and

http://www.secinfo.com/d12MGs.1n4.htm for a news release describing Micrologixs Biotech Inc. en-

tering an exclusive negotiation period with a pharmaceutical company.
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approached by clients, and need to decide whether to take the client, knowing that accepting

to serve him requires commitment and that rejecting him may push him to a rival firm. A

November 2000 headline in the Chicago Sun-Times read, “Coke backs off bid to buy Quaker

Oats: Company’s decision could open door for rival PepsiCo.”Pepsi later acquired Quaker

Oats for its Gatorade sports drink.2

In our game, a pure strategy symmetric Markov perfect equilibrium always exists. If

the commitment to a project only lasted one period, in a symmetric game, a leader would

take on any project with a positive return and a follower would never take on any project.

But, when projects can last longer than one period and require commitment of resources,

positive return projects may be rejected by both firms. The leader in a period would select

any project that has a high enough return. Interestingly, we show that there are projects

with intermediate levels of return that are rejected by the period’s leader, yet selected by the

follower. This is true even though both firms have the same value from the current project,

and the leadership position is only guaranteed for the current period. To understand the

intuition for this result, consider the lowest value project that the follower would select —the

follower is indifferent between selecting and rejecting this marginal project. The leader has

the same benefit as the follower from selecting this project, but a higher benefit from rejecting

it because if the leader rejects, the follower would select and (unless the project ends) the

follower will then be busy in the next period guaranteeing the leader the opportunity to

select next period. Thus, a benefit from having a busy rival can arise because firms compete

over the same project opportunities.

To examine the effects of competition on project selection behavior in the environment

we describe, we compare the outcome of the game with two benchmarks: a decision maker

with a capacity of one project, this analysis is similar to earlier work and is included for

easy comparison;3 and a decision maker with a two-project capacity. We find that project

2Lazare, L. Chicago Sun-Times, November 22, 2000. http://www.highbeam.com/doc/1P2-4568251.html.

Informal conversation with a former Coca Cola employee suggested that introducing a new drink requires

significant commitment of resources on the part of the company (e.g., market research, bottle design and

marketing efforts).
3The analysis of a decision maker is similar to labor search models (e.g., McCall, 1970 and Mortensen,

1970), and option value models of investment (e.g, Dixit and Pindyck, 1994).
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selection thresholds are lower under competition. That is, a duopolist selects projects that it

would have rejected absent a competitor in the market. One explanation for this is that the

duopolist expects an inferior selection of projects compared with the monopolist (because

his rival will select some of the high value projects). This reduces the value of waiting and

makes the duopolist more likely to select the current project. We also compare equilibrium

selection with the optimal choice of a joint venture (maximizing sum of profits with a two-

project capacity). We find that in duopoly competition, firms reject too many projects

compared with the jointly optimal behavior. Intuitively, the joint venture is more flexible in

using the capacity than the duopoly and the benefit from a busy rival, which is important

in the duopoly situation, is not a consideration for the joint venture.

Our main model assumes that the leader in each period is chosen at random. This

assumption is natural when firms are ex-ante symmetric. It illustrates the benefit from

having a busy rival, in a setting where it seems most surprising that one firm would accept

a project rejected by the other. However, in some cases, one of the firms may have an

advantage (perhaps it is better known, or more easily accessible). We study a version of the

game in which one firm is the leader in every period. In this asymmetric game, the follower

has a lower threshold for accepting projects than the leader for an additional reason: project

opportunities for the follower arise from an inferior (right censored) distribution of project

returns, because when free, the leader selects the most promising projects.

Our results are robust to the inclusion of payoff externalities. Considering the effect of

externalities on project selection thresholds (in the case of long duration projects), we show

that firms have lower thresholds (select more projects) under positive payoffexternalities than

without externalities, and higher thresholds with negative externalities. One might expect

positive externalities to create an incentive to reject more projects when the other firm is

free. However, the benefit from having a busy rival is reduced with positive externalities,

and the concern about committing resources is lower, so that the firm would have less reason

to reject projects. We also extend the duopoly game to an oligopoly.
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1.2 Background Literature

Our paper contributes to the literature on investment in strategic environments. In a de-

terministic setting, Fudenberg and Tirole (1985) show that strategic firms adopt a new

technology with decreasing costs sooner than they would in a monopoly market structure.

In their model, firms adopt preemptively to prevent or delay adoption by their opponents,

while in our model, a firm could benefit when its opponent selects a project. Weeds (2002),

Grenadier (2002), Pawlina and Kort (2006), Mason and Weeds (2010) offer real options mod-

els of strategic investment under uncertainty. The first two papers have symmetric models.

Pawlina and Kort (2006) include asymmetry in investment costs, and in Mason and Weeds

(2010) the leader and the follower have different flow profits. In our model, the firms are

identical, but sequential moves effectively add some asymmetry.

Weeds’(2002) duopoly patent race has two sources of uncertainty: first, the value of the

patent evolves stochastically; second, success in research has a Poisson arrival. Irreversible

investment and uncertainty create an option value for delay in investment, but since only

the first to succeed wins the prize, preemption creates an incentive to invest early. In her

paper, the position of a first mover is endogenously determined. In our model, a temporary

leader position arises exogenously, the advantage to moving first results from the ability to

select high return projects and to commit to not pursue lower return ones. In Weeds’(2002)

model, only asymmetric equilibria exist for some parameter values, while in our model a

symmetric equilibrium always exists, but asymmetric equilibria do not necessarily exist.

Grenadier (2002) introduces a model in which each firm has an option to invest in expand-

ing capacity at any point in time. Market price depends on a stochastic demand shock and

on the total quantity firms produce. Grenadier (2002) shows that competition leads firms to

invest sooner as the fear of preemption erodes the option value of investment. What drives

this is that a firm’s profits decline with the quantity produced by its competitors, creating

an incentive to invest before others. In equilibrium, all firms invest at the same time and do

so sooner than a monopolist would. In our model too, the thresholds for project selection

are lower in the duopoly game than with a monopoly. This is because firms compete for the

same projects. In Grenadier’s model, a firm becomes worse off when its opponent invests,
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while in our model a firm benefits when its opponent has invested and his resources are

committed. Also, in Grenadier’s model, investing in the current period does not preclude

a firm from investing again in the future. While in our model, when a firm invests, it is

committed and will be unable to select future projects until the commitment to the current

project ends.

Our model also relates to a surprisingly small number of strategic search models. Rein-

ganum (1982, 1983a) considers a game where sequential search for a technology is undertaken

simultaneously. Once all firms have completed their search, they compete in the goods mar-

ket. The dates at which the firms stop searching play no role. Some authors offered variations

and extensions to Reinganum’s strategic search models (e.g., Lippman and Mamer, 1993;

Taylor, 1995; Daughety and Reinganum, 2000; Hoppe, 2000). In these models, the agents

search in different pools. The interaction comes from the effect that the other agent’s search

outcome has in a subsequent stage. Our model differs from this in that a firm’s project

selection strategy affects the distribution of projects faced by the other firm. Additionally,

our firms alternate between periods of search and periods of development. This is a common

setting in job search models, but, to the best of our knowledge, it has not yet been analyzed

in a strategic search game.4

In the management literature, Cassiman and Ueda (2006) study the decision of an estab-

lished firm that generates innovations to commercialize either internally, or in an external

venture. We compare a version of our model with their paper; in that version, there is a

dominant firm (that always has priority in selection). One of their findings is that the in-

novations commercialized by the established firm have “lower profitability than innovations

commercialized through external ventures.” In contrast, our dominant firm selects higher

value projects. The difference in results are driven by many differences in our models, for

example, in Cassiman and Ueda the established firm has more resources and different com-

mercialization capacity while in our model a project generates the same value whether it is

4Other models of investment under uncertainty include patent races (e.g., Loury, 1979; Lee and Wilde,

1980; Reinganum, 1983b), search intensity is the main strategic variable in these models. Thomas (2013)

analyzes a model of strategic experimentation with a negative externality. Our results are not directly

comparable as the models differ significantly.
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selected by the dominant firm or the other firm. Another important difference is that they

consider Nash bargaining, which gives the established firm an incentive to raise total sur-

plus, while we take a non-cooperative game approach. As Cassiman and Ueda note, related

empirical evidence is limited. Gompers and Lerner (2000) compare corporate venture capital

investments (which one might interpret as investment by dominant firms) to investments by

traditional private venture capital. Examining empirical evidence, they find that “far from

being failures, corporate venture investments in entrepreneurial firms appear to be at least

as successful [...] as those backed by independent venture organizations.”This seems to be

more consistent with our prediction, although additional or alternative explanations may be

responsible for the observations in their empirical study.5

The rest of this paper proceeds as follows. In Section 2, we describe the basic model with

a single decision maker. Section 3 develops the game and analyzes the strategic interaction

between two firms. In Section 4, we discuss some extensions, including a dominant firm, an

oligopoly with n firms, and externalities. Section 5 concludes. Proofs of all the propositions

are provided in the appendix.

2 Basic Model

We begin by describing the model in the context of a decision maker —a single firm that

repeatedly decides whether to select projects that arise sequentially. This case serves as a

benchmark for comparison with the game in Section 3. Consider a discrete time infinite

horizon model. The firm maximizes the discounted sum of expected payoffs with a discount

factor 0 < δ < 1. A new project opportunity arises every period. If the firm is not currently

committed, it decides whether to select the current project. A project requires a commitment

5Our work is also related to literature on queuing. Lippman and Sheldon (1971) characterized the

optimal strategy of a single server who faces clients with different rewards and expected service times. Kalai,

Kamien and Rubinovitch (1992) examined strategic interactions between servers. Our problem has also some

similarity to the problem of dynamic assignment of a single durable object to successive agents, considered

by Bloch and Houy (2012).
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of resources, which prevents the firm from working on more than one project at a time.6

Binding commitments to a project can arise due to agreements with clients, employees, or

suppliers, or because the firm cannot search for new opportunities while working on the

current project. It is also possible that projects require a sunk cost that makes abandoning

a project, even for a better one, not worthwhile.

The duration of projects is uncertain. In each period, the commitment to a project will

end by the next period with a probability p ∈ [0, 1] . For example, for a service provider,

project duration can be the time it takes to complete the service; for a firm engaged in

acquisitions, the time it takes to transfer knowledge from the innovator to the firm, to

develop the product, and to come up with a marketing strategy.

Each project has a randomly drawn return v, which is the expected discounted present

value of net benefits from the project at the time it is selected. Project returns are identically

and independently drawn from a known distribution with a cumulative distribution function

F (v) on a finite support [v, v], such that v < 0, and v > 0. For all v, F is differentiable with

a finite density f(v) > 0. The expected value of returns is positive,
v∫
v

vf(v)dv > 0. The

payoff in a period in which no project is selected is zero.

We assumed the payoff v is obtained immediately when the project is selected. With

our assumption of a binding commitment, this value could stand for an expected value of

receiving the prize at the end of the commitment period (e.g., a firm can receive payment

for a service only when it is completed).7 Or it can be the present value of flow profits (e.g.,

profits from launching a new product once its development is complete), and flow costs that

are incurred for the duration of the project’s commitment.

6Capacity constraints could arise due to a limited number of skilled scientists and engineers, limited

physical space to run experiments, etc. Capacity constraints rather than budget constraints are used also in

the literature on rational inattention, see Sims (2010).
7The expected value is v = Et{δs−tṽ} where s− t is the time to completion and ṽ the value obtained at

the end of the period.
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2.1 A Decision Maker’s Project Selection

Denote by V0 the value function when the decision maker is not committed, before realization

of the project’s return, and denote by V1 the value function for the committed decision maker.

When the decision maker is committed, he cannot select another project. Thus,

V1 = δ [pV0 + (1− p)V1] . (1)

When he is free, he chooses to select or not to select so as to maximize:

max

v + δ [pV0 + (1− p)V1]︸ ︷︷ ︸
payoff if select

, δV0︸︷︷︸
payoff if reject

 .

Note that the continuation value if the firm selects is equal to V1. Thus, a project is selected

if v ≥ v0 where:

v0 = (δV0 − V1) . (2)

The value in the state without commitment is:

V0 =

v0∫
v

δV0f(v)dv +

v∫
v0

(v + V1) f(v)dv. (3)

If projects do not require commitment (p = 1), the selection threshold is v0 = 0. But when

projects require commitment (p < 1) , some positive return projects are rejected, v0 > 0.

Proposition 1 (i) There exists a unique solution to the system (1)-(3), with a threshold

value for project selection v0 ∈ (0, v). (ii) The threshold v0 is higher when the commitment

required for each project is expected to last longer (lower p); and when the decision maker is

more patient (higher δ). (iii) The threshold v0 is at least as high for a distribution of returns

that either first order stochastically dominates another or is a mean-preserving spread of

another.

By Proposition 1, the return from a selected project is expected to be higher in an

industry in which firms typically commit to projects that take a long time to complete (low

p in our model). In the pharmaceutical industry, for example, it takes about ten years to

bring a drug to the market (see Nicholas, 1994). The threshold for selection is higher for a
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dominating distribution because there is a higher probability that a better project will arise

in the following periods. The threshold for selection is higher for the spread because the firm

can enjoy the higher return project while rejecting those with lower return.

2.2 Two-Project Capacity Constraint

We now consider a decision maker who can work on two projects at a time. We compare

project selection of this less constrained firm with the single project capacity firm in Section

2.1. We use the two-project capacity model later, when comparing a duopoly with a joint

venture.

We denote the value functions of the decision maker with a two-project capacity with

Wi, to distinguish from that of the single project capacity values Vi. The index i ∈ {0, 1, 2}

in Wi refers to the number of projects to which the decision maker is committed. In state 2,

the decision maker cannot select a project. The optimal choices in states 0 and 1 are given

by thresholds of selection w0 and w1, respectively. The value in state 2 (when the firm is

committed to two projects) is:

W2 = δ
[
p2W0 + 2p (1− p)W1 + (1− p)2W2

]
. (4)

In state 1, the threshold level satisfies:

w1 = δ (pW0 + (1− p)W1)−W2. (5)

The value function in state 1 is:

W1 =

v∫
w1

(v +W2) f (v) dv + F (w1) δ (pW0 + (1− p)W1) . (6)

In state 0, the threshold level satisfies:

w0 = δ (1− p) (W0 −W1) . (7)

The value function in state 0 is:

W0 =

v∫
w0

[v + δ (pW0 + (1− p)W1)] f (v) dv + F (w0) δW0. (8)
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Equations (4)-(8) define the solution to the optimal decision of the firm who can work

on at most two projects at a time. In a model without commitment (p = 1), the selection

thresholds would be w1 = w0 = 0. When p < 1, selecting projects requires commitment.

Committing to a project is more costly to the firm when it has already committed to one

project before, and its threshold would be higher. Moreover, comparing firms with different

capacity constraints, we find that the single project decision maker’s threshold is higher

than both thresholds of selection of the two-project capacity firm. It is even higher than the

threshold the two-project capacity firm uses when it is already committed to one project.

Intuitively, for the two-project capacity firm, when all its resources are committed, the

expected time until at least one of the two commitments is relieved is shorter than for the

committed single project capacity firm.

Proposition 2 Suppose p < 1. For a decision maker who can work on at most two projects,

the selection threshold is higher when one project is underway than when it is not committed,

and these thresholds are lower than the selection threshold of the single project capacity firm:

v0 ≥ w1 > w0 > 0. The first inequality is strict if p > 0.

An implication of Proposition 2 is that a firm that has a more stringent capacity constraint

selects less projects and that the projects it selects are of higher average return, compared

to what the less constrained firm does. It also spends a higher fraction of its time waiting

for a project to select. The constrained firm does not select some of the low return projects

that the less constrained firm would have selected.

3 Strategic Project Selection

3.1 The Game

We consider competition between two firms A and B. Every period, a new project oppor-

tunity with a value v drawn from the distribution F (v) arises. If one firm is committed

to an earlier project and the other is free, the free firm can decide whether to select the

project. If both firms are free, one is chosen at random (with a probability 1
2
) to be that

period’s leader- or to be the first firm to make a decision to select the project or not. If the
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period’s leader selects the project, the follower cannot take on a project in that period. If the

period’s leader rejects the project (which is an irreversible decision), the follower can decide

whether to select it. Thus, when both firms are free, they play sequentially.8 If neither firm

selected the project, it disappears and a new project opportunity arises in the next period.9

As we assumed in Section 2.1, a firm can work on at most one project at a time and the

commitment of resources ends each period with a probability p.

Our solution concept is a Markov perfect equilibrium which rules out non-credible threats,

and restricts to strategies that depend only on “payoff-relevant” history (see Maskin and

Tirole, 1988)10. The Markov perfect equilibrium is a standard solution concept for dynamic

games. A state in our game is characterized by (i, j) which describe commitment: i = 0 and

i = 1 indicate whether the focal firm (the firm currently deciding, or whose value is being

defined) is free or committed respectively, and j = 0 or j = 1 indicate if the other firm is

free or committed. Additionally, k indicates the identity of the focal firm (k = A or B) and

l (which is only meaningful in state (0, 0)) indicates whether the firm is a leader (l = 1) or

the follower (l = 2). For simplicity, we will refer to (i, j) as the state omitting the identity

of the firm when this is clear from the context.

We use dynamic programming to find an equilibrium. The value function (capturing

the present discounted value of profits before realization of the period’s project’s return) in

any state is denoted by V k
i,j. We focus on characterizing symmetric equilibria. Symmetric

equilibria are simpler. We show in Proposition 3 that a pure strategy symmetric equilibrium

exists. When a symmetric equilibrium exists, it seems to be a natural solution concept

for a symmetric game. We briefly discuss asymmetric equilibria at the end of Section 3.2,

and provide more details in the online appendix. In this section we focus on symmetric

8We briefly discuss a simultaneous version of the game in the conclusions and provide more details in an

online appendix.
9In “real life,”a firm might be able to reconsider a project that it had rejected in an earlier period. In the

context of our model, we could think of the project arriving again at a later date. For tractability, however,

we abstract from the effect that rejected projects might have on the distribution of quality of future projects.
10Maskin and Tirole (1988) introduce a class of alternating move infinite horizon models of duopoly

competition in which firms make short-run commitments to a strategy (quantity or price) for a finite period

of time.
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equilibria, thus, V A
i,j = V B

i,j = Vi,j. Symmetric equilibrium strategies are characterized by

thresholds
(
v0,1, v

1
0,0, v

2
0,0

)
, where v0,1 is the threshold for the non-committed firm in a state

(0, 1), v10,0 and v
2
0,0 are the thresholds for the period’s leader (the first mover) and follower.

We say that a threshold is interior if it is in the range (v, v), so that the lowest value project

is rejected, while the highest value project is accepted.

3.2 Analysis

We derive the conditions that define the equilibrium thresholds and the values. The value

in state (1, 1) is given by:

V1,1 = δ
[
p2V0,0 + p (1− p)V1,0 + p (1− p)V0,1 + (1− p)2 V1,1

]
. (9)

In state (0, 1), the free firm chooses to select or to reject the project so as to maximize:

max

v + δ
[
p2V0,0 + p (1− p)V1,0 + p (1− p)V0,1 + (1− p)2 V1,1

]︸ ︷︷ ︸
select

, δ (pV0,0 + (1− p)V0,1)︸ ︷︷ ︸
reject

 .

Note that the continuation value when the firm selects a project is equal to V1,1. Thus, an

interior threshold return for selection satisfies:

v0,1 = δ (pV0,0 + (1− p)V0,1)− V1,1. (10)

Using the threshold v0,1, the value functions in states (0, 1) and (1, 0) are:

V0,1 =

v∫
v0,1

(v + V1,1) f (v) dv + F (v0,1) δ (pV0,0 + (1− p)V0,1) , (11)

V1,0 =

v∫
v0,1

V1,1f (v) dv + F (v0,1) δ (pV0,0 + (1− p)V1,0) . (12)

In state (0, 0), one of the firms is chosen at random to be the leader who can consider

the project first. If this firm does not select the project, then the follower faces the choice:

max

v + δ (pV0,0 + (1− p)V1,0)︸ ︷︷ ︸
select

, δV0,0︸︷︷︸
reject

 . (13)
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If the threshold is interior, it satisfies:

v20,0 = δ (1− p) (V0,0 − V1,0) . (14)

Returning to the leader’s decision, if v ≥ v20,0, so that the second firm will select if it has the

opportunity to do so, then the first firm faces the choice:

max

v + δ (pV0,0 + (1− p)V1,0)︸ ︷︷ ︸
select

, δ (pV0,0 + (1− p)V0,1)︸ ︷︷ ︸
reject ⇒ rival selects

 . (15)

The firm would select this project if v ≥ ṽ where:

ṽ = δ (1− p) (V0,1 − V1,0) . (16)

If v < v20,0, so that the follower will not select the project even if the leader rejected it, then

the leader faces essentially the same choice as that of the follower after the leader rejected a

project. Thus, for v < v20,0, neither firm selects. Combining the results, the leader selects if

v ≥ v10,0 where:

v10,0 = max
{
v20,0, ṽ

}
≥ v20,0. (17)

If ṽ > v20,0, then there is a range of project returns v
2
0,0 ≤ v < v10,0 so that the leader rejects,

but the follower selects. The equation that defines the value function in state (0, 0) is given

by:

V0,0 =
1

2

v∫
v20,0

vf (v) dv + F
(
v20,0
)
δV0,0 +

[
1− F

(
v20,0
)]
δ

[
pV0,0 + (1− p)

V0,1 + V1,0
2

]
. (18)

Proposition 3 (i) For the game described in this section, there exists a pure strategy Markov

perfect equilibrium with interior thresholds
(
v0,1, v

1
0,0, v

2
0,0

)
∈ (v, v)3 .

(ii) For long duration projects (p = 0) , the symmetric equilibrium is unique.

Existence of a symmetric pure strategy equilibrium follows from Brouwer’s fixed point

theorem. Given our assumptions on the parameters of the model, in any symmetric pure

strategy equilibrium, all the thresholds must be interior. That is, when a firm is free to

select, it does not reject all projects nor does it accept all projects. Uniqueness is not always
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guaranteed, but we can show that the equilibrium is unique at least for certain parameter

values including the case p = 0, where a firm can only select one project (an assumption

often made in literature on irreversible investment). When p = 0, the system of equilibrium

equations becomes simpler as a committed firm expects no additional payoffs V1,1 = V1,0 = 0,

and the free firm in state (0, 1) faces the same problem as that of a single decision maker,

therefore v0,1 = ṽ = v0 which we have shown to be unique. We are only left with finding one

threshold, v20,0, which we verify must be unique.

For p = 0, the observations we made above on the values and thresholds when at least one

firm is committed are true even if we allow for asymmetric equilibria. Thus, the only potential

source of asymmetry in the equilibrium strategies could be in the thresholds vk,20,0 . With an

additional assumption on the distribution function (f ′ (x) ≥ 0), there is no asymmetric

equilibrium.11

3.3 Strategic Rejection of Projects

When no commitment of resources is needed (p = 1) , the equilibrium thresholds are v0,1 =

v10,0 = v20,0 = 0. In this case, a follower will never select a project that the leader rejected.

For p < 1, we show that v20,0 < v10,0 so that there is a range of intermediate value projects,

v ∈
(
v20,0, v

1
0,0

)
, that the leader rejects and the follower selects. This result might seem

initially surprising as one might expect the leader to select all the “good enough”projects

leaving only projects that the follower would not want either. To understand why the leader’s

threshold is higher, consider the trade-off between selecting and rejecting in state (0, 0) for

the follower, given in (13) and for the leader given in (15). The payoff from selecting the

project would be same for the leader and follower, v+δ (pV0,0 + (1− p)V1,0). For the follower,

rejecting would result in a continuation value δV0,0 since no firm would select a project this

period. But for the leader, rejecting a project that the follower would select provides a higher

continuation value δ (pV0,0 + (1− p)V0,1) since with probability (1− p) the leader would have
11More details about the derivations of asymmetric equilibrium conditions are available in an online ap-

pendix. In an asymmetric equilibrium (when one exists), if vB,20,0 < vA,20,0 , when firm A is the leader, firm A

has a similar selection pattern as in the symmetric game, in particular it necessarily rejects some projects

that the follower would adopt, firm B will accept some projects that firm A would have rejected.
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a busy rival in the following period, guaranteeing that the leader could select the project in

the next period, if a high value project should arise.

Proposition 4 For p < 1, in a symmetric Markov perfect equilibrium, the thresholds for

selection in state (0, 0) satisfy v10,0 > v20,0; in the range v
1
0,0 > v ≥ v20,0, the leader rejects

the project but the follower selects it. Additionally, v10,0 ≥ v0,1 (with a strict inequality for

p ∈ (0, 1)), so that a firm rejects more projects when its rival is free.

Next, we compare the equilibrium with selection patterns in two benchmarks. First,

in Section 3.4, we compare the behavior of a firm with a one-project capacity constraint

with that of an equally constrained monopolist (a single project decision maker). Then, in

Section 3.5, we compare the outcome of the non-cooperative game with that of two firms

that maximize joint payoffs.

3.4 Competition and Project Selection

A vast literature in economics debates the relation between market structure and innovation

(see Gilbert, 2006, for a survey). We examine the effects of competition on project selection

in the context of our model. We compare the selection strategies in the duopoly game

(Section 3.1) with the selection behavior of the decision maker (Section 2.1). We show that

the threshold return for a project to be selected is lower when two firms compete than when

there is a single decision maker who is constrained to select one project. Thus, (assuming

project opportunities arise at the same rate regardless of market structure) more projects

are selected in a duopoly market than in a monopoly market. However, since the threshold

of selection is higher for the monopolist, the monopolist will tend to work on projects that

have a higher expected return.

Proposition 5 For p ∈ (0, 1) , selection thresholds are lower in duopoly competition than

for a monopolist: v10,0 < v0.

The comparison in Proposition 5 is based on the assumption that the project return is

drawn from the same distribution in the single decision maker’s problem as in the game.

If the firm enjoys a higher return from any project when it is alone in the market, the

16



distribution of returns in the decision maker’s problem may dominate that in the duopoly

case. As we have shown in Proposition 1, this would imply an even higher threshold of

selection. So the result of Proposition 4 holds, even if the monopolist earns more from each

project compared with the duopolist.

3.5 Joint Decision versus the Non-cooperative Game

The two-project capacity version we analyzed in Section 2.2 allows us to compare project

selection decisions of strategic non-cooperative firms with the decision of a joint venture. We

are interested in two comparisons. First, we compare the selection thresholds when one firm

is committed and one is free, that is, we compare the threshold of the joint venture that is

committed to one project but can still select another (w1) , to the selection threshold of the

non-cooperative firm that is not committed and has a rival who is committed (v0,1). Second,

we compare the threshold of the joint venture when it is free of commitments (w0), with the

selection threshold above which at least one of the competing firms selects the project when

they are both free
(
v20,0
)
.

Proposition 6 For p ∈ (0, 1) , a non-cooperatively competing duopolist has higher selection

thresholds compared with the jointly optimal decision maker, w1 < v0,1 and w0 < v20,0.

To prove this proposition, we first argue that the joint decision maker can obtain at least

as high a value in state 0 as the sum of values of both firms in the game in state (0, 0) ,

i.e., W0 ≥ 2V0,0. This is true because the joint decision maker can mimic the equilibrium

selection strategies in the game. We then derive the given inequalities on thresholds from

the system of dynamic programming equations. Proposition 6 suggests that competition

between firms with capacity constraints on project selection results in these firms setting too

high a bar for selection and thus rejecting too many projects compared with what would be

optimal for them in a joint decision.

We compare our results in the case p = 0 with those in Weeds (2002). In Weeds (2002),

when a symmetric equilibrium arises (which holds only for some range of parameters), then

strategic interaction increases the time to first investment compared with a joint venture.

This result is similar to our finding in Proposition 6, which shows that the thresholds are lower
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in the joint optimal strategy. As Weeds notes, “this is in stark contrast to the usual presump-

tion that the fear of preemption speeds up investment.”In Weeds’model, the threshold for

the second investment in the joint optimal strategy is higher than that in the non-cooperative

symmetric equilibrium, while in our model, the threshold for the second investment is lower.

The intuition for delay in first investment in Weeds (2002) is that strategic firms fear setting

off a patent race. In our model, the joint venture rejects less projects because of its greater

flexibility in using capacity, and because when committed to two projects, the joint venture

expects to be freed from at least one commitment sooner than a committed non-cooperative

firm. In Weeds’model, sometimes only an asymmetric equilibrium exists and when this is

the case, the joint venture would delay investment, which is in contrast to our result.

4 Extensions

We consider a number of possible generalizations of our model.

4.1 Oligopoly

Consider an oligopoly with n firms. Let us indicate states by (i, j) where i ∈ {0, 1} indicates

if the focal firm is free or busy, and j ∈ {0, 1, .., n− 1} is the total number of other firms (not

including the focal firm) that are committed at the time the firm is deciding on a project.

We assume only long duration projects in this sub-section, i.e., p = 0.12

For committed firms in any state (1, j) the values are:

V1,j = 0 for j = 0, ..., n− 1.

In state (0, n− 1), when all other firms are committed, the free firm faces the same problem

as the decision maker in Section 2.1. The threshold and value are:

v0,n−1 = δV0,n−1 and V0,n−1 =

v∫
v0,n−1

vf (v) dv + F (v0,n−1) δV0,n−1.

In state (0, j), j firms are busy and n−j firms are free. The project is considered sequentially

by the free firms in a random order, until one selects it or all reject it. If no other firm selected
12We analyze the more general case with p ∈ [0, 1] in the online appendix for n = 3 firms.
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the project earlier, the threshold for the last firm to consider the project, the (n− j)th free

firm, is:

vn−j0,j = δV0,j.

We argue that all the other firms in the sequence of decision makers that consider the project

earlier have the same threshold, which is higher than that of the last firm. The first firm to

consider the project rejects some projects that the last firm selects. If v < vn−j0,j , then the

last firm will reject the project. Knowing this, the second to last mover, the (n− j − 1)th

firm, also faces the choice between v if it selects and δV0,j if it rejects. Thus, the second to

last firm will also reject. If v ≥ vn−j0,j , the last free firm will select the project if it will be

rejected by all other firms. The second to last firm has the choice max {v, δV0,j+1}. Thus,

its threshold is:

vn−j−10,j = max
{
δV0,j+1, v

n−j
0,j

}
= max {δV0,j+1, δV0,j} .

Going to the (n− j − 2)th mover, if v < vn−j0,j , this firm knows that no one will accept it,

and it also rejects. If v ≥ vn−j0,j , if the (n− j − 2)th mover rejects, one of the other two firms

will accept the project. The (n− j − 2)th mover thus solves max {v, δV0,j+1} which is the

same as the problem that the (n− j − 1)th firm had, and thus their thresholds are equal:

vn−j−10,j = vn−j−20,j . A similar argument works for every remaining leading firm. Hence, when

j firms are committed, the last mover’s threshold is vn−j0,j = δV0,j, and for all but the last

mover, the thresholds are equal: v10,j = ... = vn−j−10,j = max {δV0,j+1, δV0,j} ≥ vn−j0,j = δV0,j.

The value in state (0, j) for j = 0, ..., n− 1 is:

V0,j =
1

n− j

v∫
vn−j0,j

vf (v) dv +
(
1− F

(
vn−j0,j

))(
1− 1

n− j

)
δV0,j+1 + F

(
vn−j0,j

)
δV0,j.

Proposition 7 When p = 0, there exists a unique symmetric equilibrium to the oligopoly

game. In equilibrium, the value of a free firm is larger the more rival firms are busy, V0,j+1 >

V0,j. Selection thresholds satisfy: v10,j = ... = vn−j−10,j > vn−j0,j , for j = 0, ..., n− 1.13

Thus, as in the duopoly case, also in the oligopoly model, the firms that move early

reject some projects that the last mover accepts. However, as the number of free firms n− j
13The proof of this proposition is provided in the online appendix.
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approaches infinity, almost all the projects are either selected by the first-moving firm or

not selected at all. The proof follows from the derivations above, and uses induction on the

number of firms.

4.2 A Dominant Firm

Asymmetry between firms could be another reason why firms sometimes reject projects that

their rivals then select. Obviously, if the leader values a project less than the follower, the

follower might select a project that the leader rejected. Even if two firms agree on the value

of a project, one firm might be more likely to evaluate projects before the other when both

are free. For example, one firm may be better known, or easier to approach, or project ideas

may start within this firm.

We consider here the extreme case where one firm is always the first to consider projects

(and there are no payoff externalities). The dominant firm, firm A, has no benefit from

having a busy rival, as it is always first to choose. The dominant firm maximizes payoffs

by ignoring its opponent, and thus using the threshold that maximizes the decision maker’s

payoffs (derived in Section 2.1) whenever it is free. Firm B, the follower, will best respond

to this strategy. Firm B’s values and thresholds in a best response to the leader’s strategy

solve the system (9)-(18) that we derived in Section 3.2 for the symmetric game, only with

minor modifications: we use the leader’s threshold as v0 in equation (12) defining V1,0 (now

V B
1,0) and we replace (18), the value in state (0, 0) , with the following:

V B
0,0 = (1− F (v0)) δ

(
pV B

0,0 + (1− p)V B
0,1

)
+

v0∫
vB,20,0

(
v + V B

1,1

)
f (v) dv + F

(
vB,20,0

)
δV B

0,0. (19)

Proposition 8 For p < 1, in a Markov perfect equilibrium, in state (0, 0), the leader selects

projects of returns higher than v0 (the unique solution to the system (1)-(3) in Section 2.1)

and rejects projects of lower value. There exists a threshold vB,20,0 < v0 so that in state (0, 0) ,

in the range v0 > v ≥ vB,20,0 , the dominant firm rejects the project, but the follower selects it.

In the symmetric model, we showed that the benefit from having a busy rival provides

an incentive for the leader to reject projects that the follower would accept. In the perfect

20



dominance case described in this subsection, the dominant firm does not benefit from a busy

rival, but the follower still selects some projects that the leader rejects because he faces an

inferior selection of projects. More generally, if firm A has an advantage in the form of

a probability β ∈
(
1
2
, 1
)
to get priority, both motives can play a role in creating a wedge

between the leader’s and the follower’s thresholds.

4.3 Payoff Externalities

So far we assumed that a firm that selects a project obtains the payoff v and its opponent

does not obtain an immediate payoff. We now address the possibility of a payoff externality.

We assume that for a project with return v to the selecting firm, the return to the other

firm is γv, where γ ∈ (−1, 1) , i.e., the externality is smaller in magnitude than the return

for the selecting firm. Negative externalities (γ < 0) may exist, for example, if the firms

compete in the marketplace and the project gives the selecting firm a cost advantage. Positive

externalities (γ > 0) may exist, for example, when there are technology spillovers. Payoffs v

and γv can also represent Stackelberg payoffs with the selecting firm becoming the market

leader in a new product market. The analysis of the model with externalities follows in

the same way as that in Section 3. The system of equilibrium equations remains the same

except for the following changes. Accounting for payoff externalities, in state (1, 0) the value

function which was given in (12) becomes:

V1,0 =

v∫
v0,1

(γv + V1,1) f (v) dv + F (v0,1) δ (pV0,0 + (1− p)V1,0) . (20)

In state (0, 0), the leader’s threshold ṽ in (16) for accepting projects that the follower would

select is given by:

ṽ =
δ (1− p)
(1− γ) (V0,1 − V1,0) ,

and the value function in state (0, 0) becomes:

V0,0 =
1 + γ

2

v∫
v20,0

vf (v) dv + δF
(
v20,0
)
V0,0 + δ

[
1− F

(
v20,0
)] [

pV0,0 + (1− p)
V0,1 + V1,0

2

]
.

The results of Proposition 4 continue to hold. Clearly, however, the equilibrium thresholds

depend on the externality γ. On the one hand, in state (0, 0) , for project values that would
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be selected by the follower if rejected by the leader, a larger γ increases the immediate value

from rejecting, γv. This suggests a positive effect on v10,0. On the other hand, a larger γ

reduces the incentive to having a busy rival and provides a force that reduces thresholds

through its effect on future values. From (11) and (20), we have:

v10,0 =
1

1− γ
immediate effect ↑

δ (1− p) (V0,1 − V1,0)
future value effect ↓

=
δ (1− p)
(1− γ)

(1− γ)
v∫
v0,1

vf (v) dv

[1− F (v0,1) δ (1− p)]
=

δ (1− p)
v∫
v0,1

vf (v) dv

[1− F (v0,1) δ (1− p)]
.

When p = 0, the threshold v0,1 is constant with respect to γ (since the rival will never be

able to select another project), the two effects on v10,0 exactly cancel out so that v
1
0,0 remains

constant as well. But the threshold v20,0 declines. When p > 0 but still small, we show that

all thresholds decline.

Proposition 9 There exists 0 < p ≤ 1 so that the equilibrium thresholds
(
v0,1, v

2
0,0, ṽ

)
are

continuously differentiable in p and in γ for all (p, γ) ∈ R = [0, p)× (−1, 1) . In R, dv
2
0,0

dγ
< 0;

also, dṽ
dγ
≤ 0 and dv0,1

dγ
≤ 0 with a strict inequality for p ∈ (0, p).

Proposition 9 implies that (for (p, γ) in the range R) in the presence of positive ex-

ternalities, the thresholds of selection are lower (more projects are selected) than without

externalities. Intuitively, with positive externalities, firms benefit less from having a com-

mitted rival, and would be less concerned about committing their own resources.

Lastly, we comment on the polar cases |γ| = 1. If γ = (−1) , we have a zero sum game,

V0,0 = V1,1 = 0, V0,1 = −V1,0, and all the thresholds are equal: v10,0 = ṽ = v20,0 = v0,1. If

γ = 1, V0,1 = V1,0. In state (0, 0), whenever the follower would accept a project
(
v > v20,0

)
,

the leader is indifferent between accepting and rejecting. There are many (payoff equivalent)

equilibria. In one of them, the inequality v10,0 = v20,0 holds.

5 Concluding Remarks

Projects often require firms to commit limited resources, preventing them from selecting

other projects while they are committed. Since more promising projects could arise during

the time a firm is committed to a project it selected earlier, constrained firms reject some
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profitable projects. In a strategic environment, project selection by one firm can change the

profitability of a rival, as well as the rival’s opportunity to take on projects. In the symmetric

game, we show that a firm sometimes rejects a project that will then be selected by a rival,

as this can lessen future competition on projects. In an asymmetric game, the follower may

accept lower value projects than the leader also because it faces an inferior distribution of

projects.

We consider the relation between market structure and innovations, in an environment

with perpetual selection of projects. We show that a duopolist has lower selection thresholds

than an identical firm who operates as a monopoly. Thus, competition induces more projects

to be selected, but the average quality of projects selected by the monopolist is higher.

If however the two firms are able to jointly make selection decisions, then the selection

thresholds of the joint decision maker are lower than in the non-cooperative equilibrium.

The joint decision maker can better manage capacity.

In attempting to maintain tractability, we made certain simplifying assumptions. In our

model, if the firm is committed, it cannot select another project until the commitment ends.

In reality, it is likely that firms can sometimes be released from a commitment at some

cost. In our model, the cost of abandoning a project is high so that the commitment is

binding. If the cost is not too high, then when a new project of high enough return arises,

the firm might find it worthwhile to abandon an old project. We expect the results to be

qualitatively similar, with perhaps lower selection thresholds because the commitment is less

binding.14 An additional interesting but challenging direction for future work is allowing for

the possibility that the duration of a project (p) is correlated with the size of the prize (v).

If high prizes are associated with long commitments, it might not be possible to characterize

strategies as thresholds of selection. Formal analyses of these extensions are left for future

work.

In analyzing strategic interactions, our model assumes sequential decisions. We argue

14When there is a cost to abandon the project, and project returns are only obtained conditional on the

project being completed, the problem becomes much more complex because in addition to the thresholds of

a free firm, when committed, the firm would need to decide whether to abandon the project. This decision

could depend on the value of the project it is currently committed to (and possibly that of its rival).
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that in many economic environments this assumption is reasonable, e.g., clients likely ap-

proach service providers sequentially. However, there may be some markets in which firms

simultaneously decide on project selection, or where the order of sequential moves might

be endogenous. If, in each period, firms simultaneously decide on selection, and each gets

the project with equal probability when they both attempt to select, there is a range of

intermediate value project returns for which firms randomize the decision to select.

Our analysis is focused on the strategic behavior of the firms that select projects. If,

however, project opportunities arise when independent innovators propose them, they might

also act strategically so as to extract surplus from the selecting firms. The game played in

each period might take the form of an auction or a bargaining game. These extensions are

interesting directions for future work.

A Appendix: Proofs

Proof of Proposition 1. (i) Re-arranging (1) and (3), then substituting into (2), we

obtain the following implicit definition of the selection decision threshold v0:

1− δ (1− p)
δ (1− p) v0 =

v∫
v0

(v − v0) f(v)dv. (21)

From (21) , we know that v0 is the solution to g(x) = 0 where g(.) takes the following form:

g(x) =
[1− δ (1− p)]
δ (1− p) x−

v∫
x

(v − x) f(v)dv. (22)

Evaluating g(x) at x = 0 and at x = v, we find that g(0) < 0 and g(v) > 0. Additionally,

g′ (x) =
[1− δ (1− p)]
δ (1− p) + [1− F (x)] > 0.

This implies that for given δ and p, there exists a unique solution to (22) in the range (0, v).

(ii) Consider g(v0; δ, p) referring to g as defined in (22) evaluated at v0 and accounting

δ, p as arguments of the function. Implicit differentiation of g(v0; δ, p) = 0 shows that:

∂g

∂v0

dv0
dp

+
∂g

∂p
= 0⇒ dv0

dp
= −∂g

∂p
/
∂g

∂v0
,

∂g

∂v0

dv0
dδ

+
∂g

∂δ
= 0⇒ dv0

dδ
= −∂g

∂δ
/
∂g

∂v0
.
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From the proof of (i), we know that ∂g
∂v0

> 0. Hence,

sign

(
dv0
dp

)
= sign

(
−∂g
∂p

)
= sign

[
− v0

δ (1− p)2
]
< 0.

Similarly,

sign

(
dv0
dδ

)
= sign

(
−∂g
∂δ

)
= sign

[
v0

δ2 (1− p)

]
> 0.

(iii) Consider two cumulative distribution functions F a and F b, defined on the interval

[v, v] so that F b first order stochastically dominates F a, i.e., F b (v) ≤ F a (v) . For each

distribution, the threshold return vi0 solves gi (v) = 0 where g
i is as defined in (22) with the

distribution F i, i = a, b. Using integration by parts, we rearrange the function gi and write

it as:

gi (v0) =
[1− δ (1− p)]
δ (1− p) v0 −

v∫
v0

[
1− F i (v)

]
dv, i = a, b. (23)

Therefore, gb (v) ≤ ga (v) . In particular, gb (va0) ≤ ga (va0) = 0. Since the function gb is

increasing, this implies that va0 ≤ vb0, which is the desired conclusion.

Consider two cumulative distribution functions F b and F a defined on [vb, vb] and [va, va] ⊂

[vb, vb] respectively so that F b is a mean-preserving spread of F a, (or F b second order sto-

chastically dominates (SOSD) F a). Define F a (v) = 0 for all v < va, and F a (v) = 1 for all

v > va. Then,

gb (va0) = gb (va0)− ga (va0) =
vb∫
va0

[
F b (v)− F a (v)

]
dv ≤

by SOSD
0.

Because the function gb is increasing, gb (va0) ≤ 0 implies that va0 ≤ vb0, which is the desired

conclusion.

Proof of Proposition 2. Using (5) , we can re-write (6) as follows:

W1 =

v∫
w1

(v − w1) f (v) dv + δ (pW0 + (1− p)W1) . (24)

Similarly, using (7) , we can re-write (8) as follows:

W0 =

v∫
w0

(v − w0) f (v) dv + δW0. (25)
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Substituting the two equations above into (7) and re-arranging, we get:

[1− δ (1− p)]
δ (1− p) w0 =

v∫
w0

(v − w0) f (v) dv −
v∫
w1

(v − w1) f (v) dv. (26)

Again, substituting (4) , (7) and (24) into (5) , we get:

w1 = δ (pW0 + (1− p)W1)−
δ[

1− δ (1− p)2
] [p2W0 + 2p (1− p)W1

]
=

δ (1− p)2[
1− δ (1− p)2

] (1− δ)W0 −
[
1− 2p[

1− δ (1− p)2
]]w0

=
δ (1− p)2[

1− δ (1− p)2
] v∫
w0

(v − w0) f (v) dv −
[
1− 2p[

1− δ (1− p)2
]]w0.

Substituting (26) into this expression and re-arranging, we get:

[1− δ (1− p)]
δ (1− p) w1 =

v∫
w1

(v − w1) f (v) dv +
p

δ (1− p)2
(w0 − w1) . (27)

We re-write (26) and (27) substituting the function g (.) that was defined in (22) :

g (w0) = −
v∫
w1

(v − w1) f (v) dv, (28)

g (w1) =
p

δ (1− p)2
(w0 − w1) . (29)

For all p < 1, if w0 ≥ w1, then g (w1) ≥ 0 > g (w0) which implies w1 > w0 (because g (.) is

increasing), a contradiction! Hence, w1 > w0 for all p < 1. Finally, w0 > 0 follows from (26)

and w1 > w0.

Note that we assume project values are drawn from the same distribution in either the

two projects or the single project capacity model. From the proof of Proposition 1(i), we

know that v0 is the solution to a strictly increasing function g (v0) = 0. From above, we

know that w1 > w0 for all p < 1 and by (29), we know that g (w1) < 0. It follows that:

g (v0) = 0 > g (w1) > g (w0) .

This implies that v0 > w1 > w0 because g (.) is increasing.

26



Proof of Proposition 3. An equilibrium is defined by the system (9)-(18). Accounting

for corner solutions, we re-write the thresholds as:

v0,1 = median {v, δ (pV0,0 + (1− p)V0,1)− V1,1, v} ,

v20,0 = median {v, δ (1− p) (V0,0 − V1,0) , v} ,

ṽ = median {v, δ (1− p) (V0,1 − V1,0) , v} ,

v10,0 = max
{
v20,0, ṽ

}
.

These thresholds are in the range [v, v] , and written as a function of the four values {V1,1, V0,1, V1,0, V0,0} .

Thus the system of equations that defines the equilibrium can be reduced to a system of 4

equations in these 4 unknowns. We substitute (9) into (11) and (12) to obtain this system

in values {V1,1, V0,1, V1,0, V0,0}:

V1,1 = δ
[
p2V0,0 + p (1− p)V1,0 + p (1− p)V0,1 + (1− p)2 V1,1

]
,

V0,1 =


v∫
v0,1

(
v + δ

[
p2V0,0 + p (1− p)V1,0 + p (1− p)V0,1 + (1− p)2 V1,1

])
f (v) dv

+F (v0,1) δ (pV0,0 + (1− p)V0,1)

 ,

V1,0 =


v∫
v0,1

δ
[
p2V0,0 + p (1− p)V1,0 + p (1− p)V0,1 + (1− p)2 V1,1

]
f (v) dv

+F (v0,1) δ (pV0,0 + (1− p)V1,0)

 ,
V0,0 =

v∫
v20,0

1

2
vf (v) dv + δF

(
v20,0
)
V0,0 + δ

[
1− F

(
v20,0
)] (1− p) (V0,1 + V1,0) + 2pV0,0

2
,

where the thresholds are given above. The right hand side is a continuous function from

the compact set
[
1
1−δv,

1
1−δv

]4
to the same set. By Brouwer’s theorem, a fixed point for this

system exists. The fixed point satisfies the system (9)-(18) and it is therefore an equilibrium.

To show that the equilibrium must be interior given our assumptions, we consider sep-

arately each possible case in which a threshold either equals v or v. The derivations are

simple, but lengthy, and we defer them to an online appendix. Lastly, to show that for

p = 0 the symmetric equilibrium is unique, we note that in this case V1,1 = V1,0 = 0. The

equations defining V0,1 and v0,1 become identical to those defining the value and threshold in

the decision maker case. As shown in the proof of Proposition 1, there is a unique threshold
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v0,1 = v0. From (16), we find that ṽ = v0,1. Lastly, it remains to show that the threshold

v20,0 is unique given all the other thresholds are unique, which we can verify by substituting

v20,0 = δV0,0 into the expression for V0,0 in (18) and rearranging to obtain that v20,0 is the

unique solution to:

(
1− δ
δ

)
v20,0 =

1

2

v∫
v20,0

vf (v) dv +
[
1− F

(
v20,0
)] (1− p) v0,1 − 2 (1− p) v20,0

2
.

Proof of Proposition 4. By (17) , v10,0 = max
{
v20,0, ṽ

}
≥ v20,0, and v

1
0,0 > v20,0 iff

ṽ > v20,0. We need to show that ṽ > v20,0. We first reduce the system (9)-(18) that defines

the equilibrium to a system of three equations in the three unknowns: ṽ, v0,1 and v20,0, using

substitution and simple manipulations.Details of the derivations of this system are available

from the authors upon request. The reduced system is given by:

[1− δ (1− p)]
δ (1− p) ṽ −

v∫
v0,1

(v − ṽ) f (v) dv = 0, (30)

[1− δ (1− p)]
δ (1− p) v0,1 −

v∫
v0,1

(v − v0,1) f (v) dv −
p
(
v20,0 − v0,1

)
δ (1− p)2

= 0, (31)

[1− δ (1− p)]
δ (1− p) v20,0 −


v∫

v20,0

(
v − v20,0

)
f (v) dv − 1

2

v∫
v20,0

(v − ṽ) f (v) dv

−
v∫
v0,1

(v − v0,1) f (v) dv +
v∫
v0,1

(v − ṽ) f (v) dv

 = 0. (32)

It is easy to verify that v20,0 = v0,1 = ṽ will be a solution to the system iff p = 1. Now

suppose p < 1.

By (30) and (31) ,

v0,1 ≥ ṽ ⇔ [1− δ (1− p)]
δ (1− p) v0,1 −

v∫
v0,1

(v − v0,1) f (v) dv ≥ 0⇔ p
(
v20,0 − v0,1

)
≥ 0. (33)

Thus, for p = 0, we have v0,1 = ṽ and for p > 0 we have either v20,0 ≥ v0,1 ≥ ṽ or ṽ ≥ v0,1 ≥

v20,0.
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By the definition of g in (22) and from (31) and (32) , we have:

g
(
v20,0
)
− g (v0,1)

=



 [1−δ(1−p)]
δ(1−p) v20,0 −

v∫
v20,0

(
v − v20,0

)
f (v) dv


−
[
[1−δ(1−p)]
δ(1−p) v0,1 −

v∫
v0,1

(v − v0,1) f (v) dv
]


=

−1
2

v∫
v20,0

(v − ṽ) f (v) dv −
v∫
v0,1

(v − v0,1) f (v) dv +
v∫
v0,1

(v − ṽ) f (v) dv


−
[
[1−δ(1−p)]
δ(1−p) v0,1 −

v∫
v0,1

(v − v0,1) f (v) dv
]

=

−1
2

v∫
v20,0

(v − ṽ) f (v) dv +
v∫
v0,1

(v − ṽ) f (v) dv − [1− δ (1− p)]
δ (1− p) v0,1


=

−1
2

v∫
v20,0

(v − ṽ) f (v) dv + [1− δ (1− p)]
δ (1− p) ṽ − [1− δ (1− p)]

δ (1− p) v0,1

 , from (30)

= −1
2

v∫
v20,0

(v − ṽ) f (v) dv − [1− δ (1− p)]
δ (1− p) (v0,1 − ṽ) .

If v20,0 ≥ v0,1 ≥ ṽ, then:

v∫
v20,0

(v − ṽ) f (v) dv ≤
v∫
v0,1

(v − ṽ) f (v) dv.

Also, (−1
2

) v∫
v20,0

(v − ṽ) f (v) dv

 < 0.
Hence, if v20,0 ≥ v0,1 ≥ ṽ, then

[
g
(
v20,0
)
− g (v0,1)

]
< 0 which is a contradiction because g is

strictly increasing. Therefore, by (33), if p = 0, it must be that ṽ = v0,1 > v20,0, and if p > 0,

then it has to be the case that ṽ > v0,1 > v20,0.

Proof of Proposition 5. From the proof of Proposition 1, we know that v0 is the

solution to g(v0) = 0, where g (.) is an increasing function defined in (22).
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From the proof of Proposition 4, we know that v10,0 = ṽ > v0,1 for all p ∈ (0, 1) and hence

we can rewrite (30) as follows:

[1− δ (1− p)]
δ (1− p) v10,0 =

v∫
v0,1

(
v − v10,0

)
f (v) dv

or, g
(
v10,0
)
= −

v10,0∫
v0,1

(
v10,0 − v

)
f (v) dv < 0 = g (v0) .

This implies that v10,0 < v0.

Proof of Proposition 6. We use the system of equations for the two-project capacity

version in Section 2.2. We follow three steps to prove this proposition.

Step 1: We argue that the optimal project selection strategy of the two-project capacity

firm yields a value that is at least as large as the sum of equilibrium values of the two firms

in the game, i.e., W0 ≥ 2V0,0. The reason why this is true is that the two-project capacity

decision maker can mimic the selection behavior of the strategic firms by setting thresholds:

w0 = v20,0 and w1 = v0,1.

With these thresholds, a project is implemented by the decision maker if and only if one of

the firms would have selected the project in the game. Using the thresholds from the game,

the values become:

W1 = (V0,1 + V1,0) , W0 = 2V0,0, and W2 = 2V1,1.

These values satisfy equations (4), (6) and (8) in the two-project capacity problem. Thus,

the two-project capacity decision maker can achieve at least 2V0,0 in state 0, and hence it

must be that in the optimal strategy, W0 ≥ 2V0,0.

Step 2: We have shown in Proposition 4 that v20,0 < v10,0 = ṽ. This implies that:

v∫
v20,0

(
v − v20,0

)
f (v) dv >

v∫
v20,0

(v − ṽ) f (v) dv.

We subtract δV0,0 from both sides of (18), rearrange and substitute (14) and (16) to find

that:

(1− δ)V0,0 =
v∫

v20,0

(
v − v20,0

)
f (v) dv − 1

2

v∫
v20,0

(v − ṽ) f (v) dv, (34)
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and hence we have:

(1− δ)2V0,0 = 2

v∫
v20,0

(
v − v20,0

)
f (v) dv −

v∫
v20,0

(v − ṽ) f (v) dv

> 2

v∫
v20,0

(
v − v20,0

)
f (v) dv −

v∫
v20,0

(
v − v20,0

)
f (v) dv

=

v∫
v20,0

(
v − v20,0

)
f (v) dv.

Suppose, by contradiction, that w0 ≥ v20,0. Then,

(1− δ)2V0,0 >
v∫

v20,0

(
v − v20,0

)
f (v) dv ≥

v∫
w0

(v − w0) f (v) dv = (1− δ)W0.

Where the last equality is derived from (8) and (7). But we argued that W0 ≥ 2V0,0, a

contradiction! Hence, it must be that w0 < v20,0.

Step 3: We argue that because v20,0 > w0, it must follow that v0,1 > w1. By contradiction,

if it was the case that v0,1 ≤ w1, then using the definition of g (.) in (22) in the proof of

Proposition 1, we have:

g (v0,1) ≤ g (w1) because g (.) is increasing

⇒
p
(
v20,0 − v0,1

)
δ (1− p)2

≤ p (w0 − w1)
δ (1− p)2

by (31) and (29)

⇒
(
v20,0 − v0,1

)
≤ (w0 − w1)

⇒
(
v20,0 − w0

)
≤ (v0,1 − w1) ≤ 0

⇒ v20,0 ≤ w0, a contradiction!

Hence, it must be that v0,1 > w1.

Proof of Proposition 8. For the leader (firm A), the strategy vA0,1 = vA0,0 = v0, which

is the optimal strategy for the decision maker, maximizes payoffs. The values for the leader

are then:

V A
1,1 = V A

1,0 = V1 and V A
0,1 = V A

0,0 = V0.
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For firm B, the best response to the leader’s strategy is derived from the same system of

equations as in Section 3.2, using vA0,1 = v0 for the value in state (1, 0) and (19) for the

value in state (0, 0) .We would like to show that vB,20,0 < v0. Suppose by contradiction that

vB,20,0 ≥ v0. Then by (19), we get:

V B
0,0 = (1− F (v0)) δ

(
pV B

0,0 + (1− p)V B
0,1

)
+ F (v0) δV

B
0,0.

Reducing the system of equations to one with only thresholds (as we did in the proof of

Proposition 4), we obtain:

[1− δ (1− p)]
δ (1− p) v0 =

v∫
v0

(v − v0) f (v) dv,

[1− δ (1− p)]
δ (1− p) ṽB =

v∫
v0

(
v − ṽB

)
f (v) dv +

vB0,1∫
v0

(
vB0,1 − v

)
f (v) dv,

[1− δ (1− p)]
δ (1− p) vB0,1 =

v∫
vB0,1

(
v − vB0,1

)
f (v) dv +

p
(
vB,20,0 − vB0,1

)
δ (1− p)2

,

[1− δ (1− p)]
δ (1− p) vB,20,0 =

v∫
v0

(
v − vB,20,0

)
f (v) dv −

v∫
v0

(
v − vB0,1

)
f (v) dv.

If p = 0, we immediately obtain from the first three equations that vB0,1 = v0 = ṽB, and the

fourth implies vB,20,0 < v0.

Consider p ∈ (0, 1) . Define g1 (x) = [1−δ(1−p)]
δ(1−p) x −

v∫
v0

(v − x) f (v) dv. Note that g1 (.) is

strictly increasing. Hence,

vB,20,0 ≥ v0 ⇔ g1

(
vB,20,0

)
≥ g1 (v0) = 0

⇔
v∫
v0

(
v − vB0,1

)
f (v) dv ≤ 0⇒ vB0,1 > v0 ⇔ g

(
vB0,1
)
> g (v0) = 0⇔ vB,20,0 > vB0,1.

Hence,

vB,20,0 > vB0,1 > v0.
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The equation for vB,20,0 implies:

[1− δ (1− p)]
δ (1− p) vB,20,0 =


v∫

vB,20,0

(
v − vB,20,0

)
f (v) dv −

vB,20,0∫
v0

(
vB,20,0 − v

)
f (v) dv

−
v∫
vB0,1

(
v − vB0,1

)
f (v) dv +

vB0,1∫
v0

(
vB0,1 − v

)
f (v) dv



or, g
(
vB,20,0

)
= −


vB,20,0∫
v0

(
vB,20,0 − v

)
f (v) dv −

vB0,1∫
v0

(
vB0,1 − v

)
f (v) dv

− v∫
vB0,1

(
v − vB0,1

)
f (v) dv.

Now
x∫
v0

(x− v) f (v) dv is increasing in x > v0, hence
vB,20,0∫
v0

(
vB,20,0 − v

)
f (v) dv >

vB0,1∫
v0

(
vB0,1 − v

)
f (v) dv ⇒

g
(
vB,20,0

)
< 0 = g (v0)⇔ vB,20,0 < v0, a contradiction!

Proof of Proposition 9. The equilibrium thresholds in the model with externalities

is a solution to a H
(
v0,1, v

2
0,0, ṽ; p, γ

)
= 0, where h1 is given by (30) , h2 is given by (31) and

generalizing (32) to account for the externality,

h3 =
[1− δ (1− p)]
δ (1− p) v20,0 −


v∫

v20,0

(
v − v20,0

)
f (v) dv − (1−γ)

2

v∫
v20,0

(v − ṽ) f (v) dv

−
v∫
v0,1

(v − v0,1) f (v) dv + (1− γ)
v∫
v0,1

(v − ṽ) f (v) dv

 . (35)

This system is continuously differentiable, and at p = 0, the determinant of its Jacobian

matrix is strictly positive. By the implicit function theorem, around p = 0, the thresholds

are continuously differentiable. Thus, there is a non-empty set R = [0, p) × (−1, 1) where

the thresholds are continuously differentiable. When p = 0, v0,1 = ṽ = v0, are constant with

respect to γ. Implicitly differentiating h3 = 0, we find that
dv20,0
dγ

< 0. For p > 0 in R, (30)

implies that sign
(
dṽ
dγ

)
= sign

(
dv0,1
dγ

)
and (31) implies that sign

(
dv0,1
dγ

)
= sign

(
dv20,0
dγ

)
.

Suppose by contradiction that there exists (p, γ) ∈ R so that
dv20,0
dγ

> 0. Since we have

proved that for any γ and p = 0, this threshold is decreasing in γ, there must exist p∗ ∈ (0, p)

for which
dv20,0
dγ

= 0. For this p∗, by equation (31) , dv0,1
dγ

= 0 and then by (30) also dṽ
dγ
= 0. But

this cannot be since then by (35), we would need to have ∂h3
∂γ
= 0 which would imply that:

v∫
v0,1

(v − ṽ) f (v) dv − 1
2

v∫
v20,0

(v − ṽ) f (v) dv = 0. (36)

33



Substituting (36) into (35), we would obtain:

[1− δ (1− p)]
δ (1− p) v20,0 −

v∫
v20,0

(
v − v20,0

)
f (v) dv =

− v∫
v0,1

(v − v0,1) f (v) dv

 < 0.

Re-arranging (36), we have:

1

2

v0,1∫
v20,0

(v − ṽ) f (v) dv = 1

2

v∫
v0,1

(v − ṽ) f (v) dv.

We know that
v∫
v0,1

(v − ṽ) f (v) dv > 0 by (30) and ṽ > 0. Thus,
v0,1∫
v20,0

(v − ṽ) f (v) dv > 0.

But by Proposition 4, ṽ > v0,1 > v20,0 so this implies
v0,1∫
v20,0

(v − ṽ) f (v) dv < 0, a contradiction!

Thus, v20,0 decreases with γ, and so do the other two thresholds which we have shown move

in the same direction as v20,0.
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