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Optimal Project Selection Mechanisms †

By Talia Bar and Sidartha Gordon *

We study mechanisms for selecting up to m out of n projects. 
Project managers’ private information on quality is elicited through 
transfers. Under limited liability, the optimal mechanism selects 
projects that maximize some function of the project’s observable and 
reported characteristics. When all reported qualities exceed their 
own project-specific thresholds, the selected set only depends on 
observable characteristics, not reported qualities. Each threshold is 
related to (i) the outside option level at which the cost and benefit of 
eliciting information on the project cancel out and (ii) the optimal 
value of selecting one among infinitely many ex ante identical 
projects. (JEL D21, D82, O32)

Many individuals, firms, and government agencies face situations in which they 
need to choose between a number of projects. Often, when making this choice 

the decision maker (from now on “the firm”) is not fully informed and needs to rely 
on better informed agents whose interests are not aligned with the firm’s interests. 
Our paper studies the firm’s project selection problem under asymmetric informa-
tion. For example, a firm, or a government agency, deciding which R&D projects 
to pursue, from projects proposed by managers working for the firm; or a corporate 
board deciding which capital investment project to finance.

Projects can be risky, the likelihood of success (or the net expected return) might 
not be known to the decision maker, who is not sufficiently familiar with the techni-
cal details. Project managers hold private information about the quality of their proj-
ects, and typically prefer that their own project be selected. Hence, their interests 
are not perfectly aligned with those of the decision maker, and an agency problem 
arises. As Paul Sharpe (vice president at SmithKline Beecham) and Tom Keelin 
described:

Major resource-allocation decisions are never easy. For a pharmaceu-
ticals company like SB [SmithKline Beecham], the problem is this: How 
do you make good decisions in a high-risk, technically complex business 
when the information you need to make those decisions comes largely 
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from the project champions who are competing against one another for 
resources?

— (Sharpe and Keelin 1998, 45)

In our model, a firm can only choose to pursue a limited number of projects (up 
to m projects) from a given selection of ​( n ≥ m )​ projects. Each project, if selected, 
would yield some return to the firm. Projects of higher quality yield higher returns. 
There is a fixed set of projects to choose from and the firm knows the distribution 
of qualities for each project. Managers have private information about the quality of 
their project. For example, a manager might know the probability of success of his 
project. A project manager enjoys a private benefit if his own project is selected, and 
competes with other managers to be financed. Hence, unless given the right incen-
tives, a project manager might overstate the quality of his project. It is costly for the 
firm to elicit information on project quality.

We take a mechanism design approach and look for an optimal mechanism. A 
direct mechanism consists of a project selection rule and a transfer scheme (which 
depend on reported project qualities). Transfers are restricted to be nonnegative—
a limited liability constraint. This constraint distinguishes our problem from the 
classic design of an optimal auction, where transfers are bounded by an individual 
rationality constraint. It is appropriate in contexts where the firm cannot take away 
money from project managers, or when managers are entitled to some sort of base 
salary, as may be the case within a firm.

Regarding limited liability, the following remark is in order. The limited liabil-
ity constraint does not lead to interesting and new solutions in all problems. For 
example, if the firm only cares about (minimizing) transfers, the solution is trivial. 
It should select projects randomly and never compensate any manager. Or if the firm 
only cares about selecting a good project, it should use a Vickrey-Clarke-Groves 
mechanism. The constraint is theoretically interesting in the case where the firm 
cares both about selecting a good project and about not spending too much on trans-
fers, as is the case in our model.

We focus on mechanisms that only depend on reported project qualities and not 
on the realized outcome of the selected projects. Such schemes may be appealing for 
R&D projects that take a long time to be completed. For example, based on an inter-
view of Merck’s CFO Judy Lewent, Nichols (1994) states that it takes about 10 years 
to bring a drug to market, and once there, 70 percent of the products fail to return the 
cost of capital. It may also be that the outcome of the project is only observable by 
the firm (and not by the project managers or by a third party). This would be the case, 
for example, if the project is part of a bigger scheme. Moreover, in some cases, for 
example, in basic research projects, verifying success might prove difficult. We also 
characterize the optimal mechanism when transfers can be contingent on the realiza-
tion of project selection and returns. We show that, in general, mechanisms that allow 
such state dependent transfers can yield higher profits than the simple mechanisms 
we discussed earlier. But, when private benefits of project managers do not depend on 
project quality, the firm cannot improve its profits by making transfers state dependent.

If the firm knew the projects’ qualities, the optimum would be to choose the m high-
est quality projects. However, in the presence of information asymmetry, the optimal 



Vol. 6 No. 3� 229bar and gordon: optimal project selection mechanisms

mechanism is such that sometimes the firm selects inferior projects. When project 
managers are ex ante identical, the optimal project selection rule involves a cutoff 
quality such that if, at most, m project managers report a quality above the cutoff, the 
highest quality projects would be selected. But if more project managers report high 
quality, the firm’s allocation rule randomizes between those projects whose quality 
exceeds the cutoff. Hence, suboptimal projects may be selected. When projects are 
ex ante asymmetric, the inefficiency of the optimal mechanism takes a more subtle 
form. For any given realized qualities of the other projects, the probability that any 
particular project is selected is constant with respect to its own quality when it is 
higher than some predetermined project-specific quality cutoff. Each project’s quality 
cutoff only depends on the project’s own observable characteristics.

Intuitively, the firm faces a trade-off between choosing the most promising 
project, and saving on costs of eliciting information. When project managers’ pri-
vate benefits from being selected are very high, the cost of eliciting information may 
be too high, and the optimal mechanism would be to choose a project independent of 
reported quality. A mechanism that always chooses a fully efficient allocation is only 
optimal if project managers have no private benefits (or if information is complete). 
Between these two extremes, there is a subset of the project quality space (one with 
multiple promising projects) over which the firm’s selection is independent of the 
quality of projects in that range. Within this region, the marginal cost of eliciting 
additional quality information exceeds the marginal value of this information.

The optimal mechanism involves transfers that help the firm to elicit information. 
Managers of projects that were not selected may get transfers that compensate them 
for truthfully reporting lower quality. While rewarding a manager of a project that 
is not selected may seem surprising at first, such a mechanism can be important for 
providing incentives and can be implemented in practice. Rewards for nonselected 
projects may be monetary or of another nature. For example, within an organization, 
an R&D project manager that was not selected may be transferred to a (possibly bet-
ter paid, more prestigious, or more secure) position involving administrative duties.

While our paper’s main motivation is project selection, our model may also be 
applicable to other situations. For example, the model can also capture the problem 
of a constrained employer who needs to decide who should retire. The employees 
(“project managers”) benefit from continuing to work. Their benefits are positively 
correlated with their productivity, and some aspect of it is private information (such 
as the person’s health). Those who retire receive a monetary incentive to do so. 
Similarly, our model might capture the decision of an employer who needs to decide 
whom among n employees to promote to m ≤ n desirable positions. In order to 
select the best candidates for these positions, the others may be offered some com-
pensation. Or consider parents who need to decide which of their kids to send to 
college, those not sent to college may receive other monetary rewards. In all these 
examples, it is crucial that the set of candidate projects and their quality distributions 
is exogenous and fixed. Otherwise, the commitment to pay those not selected could 
attract bad projects or reduce incentives of a project manager to either improve or 
acquire information about the quality of his project.

The rest of the paper is organized as follows. In Section I, we present the model. 
In Section II, we consider the simple choice between a single project and an outside 
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option. The optimal mechanism for the general problem is derived in Section III. 
In Section IV, we present comparative statics results. In Section V, we discuss 
extensions of the model, the formal derivations of these are available in an online 
Appendix. In Section VI, we review related literature; and Section VII provides 
concluding remarks. All proofs are in the Appendix.

I.  Model

A firm faces a choice between n projects i ∈  = ​{ 1, …, n }​. Being resource 
constrained, the firm can choose to select up to m ≤ n projects. Each project is 
represented by an agent (a researcher or project manager). Project i’s true qual-
ity ​q​i​, which is its net expected return for the firm, is drawn from a distribution 
​F​i​(​q​i​) on [​​q​i​ _​ , ​_ ​q​i​ ​] ⊂ ℝ with a positive density function ​f​i​(​q​i​) > 0. We assume that ​q​i​ 
are independent random variables. The quality of each project is private information 
of its manager. In addition to the n projects, the firm has an outside option that must 
be chosen if no other project is selected. The outside option is the best alternative to 
selecting a project. It can be that the best alternative is not to select any project that 
yields q° = 0, or a project whose quality q° ∈ ℝ is known to the firm. If not select-
ing a project is possible then the outside option satisfies q° ≥ 0.

Project managers enjoy a private benefit ​b​i​(​q​i​) ≥ 0 if their own project is selected, 
which represents an expected value of payoffs.1 Because we assume it is the firm that 
finances the project, and not the managers, we find it reasonable to assume that benefits 
are nonnegative. We also assume the private benefit is nondecreasing in the quality of 
the project ​b​ i​ ′ ​(​q​i​) ≥ 0. The benefit is assumed weakly increasing to capture the fact that 
managers may get a higher benefit from being financed when their projects are more 
profitable. This can result from a greater feeling of satisfaction, pride, or reputation from 
working on a project that is more likely to succeed.2 Higher quality projects can also 
be easier to implement. The benefit functions are common knowledge. In our model, a 
project manager cannot benefit from the project unless it is selected and financed. For 
example, a researcher working for a pharmaceutical company is not likely to be able to 
develop a drug on her own, and may be limited in her ability to secure other funding for 
a project (possibly because of “covenant not to compete” agreements with the company 
she works for, or because the value of the project is firm specific).

The firm decides which projects to select, and whether to offer additional pay-
ments to project managers. An allocation p = (  ​p​1​, … ,  ​p​n​) is a vector of probabili-
ties, with ​p​i​ representing project i’s probability to be selected. A vector of transfers  
t = ​( ​t​1​, … , ​t​n​ )​ indicates how much money each manager receives from the firm. 
The firm cannot take money from the managers, i.e., managers have limited liability, 
t ≥ 0. In a direct mechanism, each project manager reports her quality and the firm 

1 When project quality represents the probability of success of a binary random variable, we can write 
b(​q​i​) = ​q​i​ ​b​ i​ s​ + (1 − ​q​i​)​b ​ i​ f​ , where ​b​ i​ s​ is the private benefit in case the project succeeds and ​b ​ i​ f​ is the private benefit 
in case it fails. It is natural to assume in this example that ​b ​ i​ f​ < ​b​ i​ s​.

2 Stern (2004) found, using survey data on job offers made to PhD biologists, that offers that contained science-
oriented provisions were associated with lower monetary compensation and starting wages. Such result lends sup-
port to the intuitive assumption that project managers enjoy private benefits from having their own projects financed.
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selects projects and transfers money to managers depending on the reports. Thus, a 
direct mechanism is a function q ↦ ​( p​( q )​, t​( q )​ )​.3

In the game played, the firm first chooses and commits to a direct mechanism. 
The managers of the n projects simultaneously report to the firm their projects’ 
qualities, and the allocation p​( q )​ and transfers t​( q )​ are realized. We look for a 
dominant-strategy incentive compatible mechanism. The firm’s objective is to maxi-
mize its expected profits:

(1)	​   max    
​​{  ​p​i​(q), ​t​i​(q) }​​i​

​ ​{ ​E​q​ ​[ ​∑​ 
i=1

 ​ 
n

  ​ [​( ​q​i​ − q° )​ ​p​i​(q) − ​t​i​(q)] ]​  }​
subject to

(2)	 feasibility : ​∑​ 
i=1

 ​ 
n

  ​ ​p​i​(q)  ≤  m  and  0  ≤  p​ ​j​ (q)  ≤  1 for all q and j; 

(3)	 limited liability (L​L​i​) : ​t​i​(q)  ≥  0 for all i and for all q; 

and the following incentive compatibility constraints: for all q, for all i, and for 
all ​q​ i​ ′​,

(4)	 (I​C​i​) : p​ ​i​(q)​b​i​(​q​i​)  + ​ t​i​(q)  ≥ ​ p​i​(​q​ i​ ′​, ​q​−i​)​b​i​(​q​i​)  + ​ t​i​(​q​ i​ ′​, ​q​−i​), 

where q = (​q​1​, … , ​q​n​), with its j th component being project j  ’s quality; and (​q​ i​ ′​,  ​q​−i​) 
equals q everywhere except in its i th coordinate, which is replaced with ​q​ i​ ′​. 4

Finally, we introduce notation that would be helpful in later analyses. For any 
quality of project i, ​q​i​, let

(5)	​G ​i​​( ​q​i​ )​  = ​ q​i​  + ​ b​i​(​q​i​)  + ​ b​ i​ ′​(​q​i​) ​ 
​F​i​​( ​q​i​ )​

 _ 
​f​i​(​q​i​)

 ​ 

be the virtual return that is obtained from selecting project i. Throughout the paper, 
we assume that this function is strictly increasing. Note that the sum of the first 
two terms is necessarily strictly increasing. The function is monotone as long as 
the derivative of the third term is not too negative. This holds true for a wide range 
of parametric assumptions, for example, if ​b​i​(​q​i​) is convex (or linear) in ​q​i​ and the 
reverse hazard ​f​i​(​q​i​)/​F​i​​( ​q​i​ )​ is nonincreasing. The latter holds, for nearly all the com-
monly used distributions (see Moore 1985). Additionally, the function ​G​i​​( ​q​i​ )​ is 
strictly increasing for any distribution when ​b​i​(​q​i​) is constant.

3 In Section V, we also consider more general mechanisms with transfers that depend on observed realized 
returns of selected projects, when the quality of a project is its expected return.

4 The constraint (4) is a dominant-strategy incentive compatibility condition, as opposed to the Bayesian incen-
tive compatibility constraint often used. In the online Appendix, we show that the optimal mechanism we find 
is also optimal among Bayesian incentive compatible mechanisms. This result is related to Manelli and Vincent 
(2010), although we could not directly apply their findings due to the presence of the limited liability constraint.
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II.  One Project

In this section, we derive the optimal mechanism when the firm faces the choice 
between selecting a unique project i or the outside option. The analysis of this case, 
where m = n = 1, will facilitate the analysis of the general problem in Section IV. 
The unique project is denoted by i rather than 1 to avoid repetitions in the rest of 
the paper.

A. Threshold Mechanisms

A natural family of direct mechanisms to consider is to select the project when-
ever its reported quality exceeds a given threshold, and choose the outside option 
otherwise.

Definition 1: A threshold mechanism a, for a ∈ ​[ ​​q​i​ _​ ,  ​_ ​q​i​ ​ ]​ is defined by

	​ p​i​​( ​q​i​ )​  = ​ {  ​​
1
   

0​
​ ​

​

if ​q​i​ ≥ a,
   

if ​q​i​ < a.​
​ 
​
​  and ​ t​i​​( ​q​i​ )​  = ​ {  ​​  0

   
​b​i​​( a )​​

​ ​
​
 
if ​q​i​ ≥ a,

   
if ​q​i​ < a.​

​ 
​
​

The outside option is selected with probability 1 − ​p​i​​( ​q​i​ )​.

The transfers make truthful reports incentive compatible. There is no need to 
give a transfer to the manager whose project is selected. However, whenever the 
project is not selected, the manager is compensated an amount equal to ​b​i​​( a )​. By 
falsely reporting a quality high enough to be selected, the manager could get at most 
​b​i​​( ​q​i​ )​ ≤ ​b​i​​( a )​, so there is no incentive to overstate the quality. In a threshold mecha-
nism with a = ​​q​i​ _​ , the project is always selected.

Always selecting the outside option, without transfers, is not a threshold 
mechanism.5 We refer to this mechanism as the outside option mechanism. In the 
remainder of the section, we look for the optimal mechanism, among all threshold 
mechanisms, and the outside option mechanism. In Section III, we establish that this 
restriction is without loss of generality.

In a threshold mechanism a, when the project quality is ​q​i​ < a, the firm selects 
the outside option and pays ​b​i​(a) to the project manager. In this range, the firm’s 
payoff is constant, q° − ​b​i​(a). When the project quality is ​q​i​ ≥ a, the project is 
selected and no transfers are given. In this range, the firm’s payoff is ​q​i​. Thus, 
the expected profit for the firm under the threshold mechanism a and the outside 
option q° equals

	 V​( a, q° )​  = ​ ( q° − ​b​i​(a) )​ F​( a )​  + ​ ∫  ​ 
a
​ 
​_ ​q​i​ ​
​​q​i​ ​f​i​​( ​q​i​ )​ d​q​i​.

5 If we redefine transfers so that ​p​i​​( ​q​i​ )​ = 1 for ​q​i​ > a, there is a threshold mechanism that always selects the 
outside option. However, by Definition 1, it would be accompanied by positive transfers. The outside mechanism 
defined here involves no transfers.
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Substituting ​b​i​(a)F​( a )​ = ​b​i​​( ​
_
 ​q​i​ ​ )​ − ​∫ ​ a​ 

​_ ​q​i​ ​​​[ ​b​i​​( ​q​i​ )​ ​f​i​​( ​q​i​ )​ + ​b​ i​ ′​​( ​q​i​ )​ F​( ​q​i​ )​ ]​ d​q​i​ , we obtain

V​( a, q° )​ = q°F​( a )​ + ​∫ ​ a​ 
​_ ​q​i​ ​​​[ ​b​i​​( ​q​i​ )​ ​f​i​​( ​q​i​ )​ + ​b​ i​ ′​​( ​q​i​ )​ F​( ​q​i​ )​ ]​ d​q​i​ − ​b​i​​( ​

_
 ​q​i​ ​ )​ + ​∫  ​ a​ 

​_ ​q​i​ ​​​q​i​ ​f​i​​( ​q​i​ )​ d​q​i​.

Rearranging and using the definition of the virtual return ​G​i​​( · )​ in (5) we obtain

(6)	 V​( a, q° )​  = ​ ∫  ​ 
a
​ 
​_ ​q​i​ ​
​​ G​i​​( ​q​i​ )​ ​f​i​​( ​q​i​ )​ d​q​i​ − ​b​i​​( ​

_
 ​q​i​ ​ )​  +  q°F​( a )​.

We look for the quality threshold ​a​ i​ ∗​​( q° )​ that maximizes this value for a given q°. 
Because ​G​i​​( · )​ is increasing, the firm’s profit V​( ·, · )​ is single-peaked in a. In an 
interior solution,

	​  ∂V _ 
∂a

 ​ ​( a, q° )​  =  − ​G​i​​( a )​ ​f​i​​( a )​  +  q° ​f​i​​( a )​  =  0,

which implies ​G​i​​( ​a​ i​ ∗​​( q° )​ )​ = q°. That is, the profit V​( a, q° )​ is maximized at a thresh-
old quality a that equalizes the virtual return ​G​i​​( a )​ with the quality of the outside 
option q°. For low values of the outside option, q° < ​G​i​​( ​​q​i​ _​ )​, ​ ∂V _ ∂a

 ​ ​( a, q° )​ < 0 for all 
a, which implies that the optimal threshold is ​​q​i​ _​. Similarly for high values of the 
outside option, q° > ​G​i​​( ​

_
 ​q​i​ ​ )​, the optimal threshold is ​

_
 ​q​i​ ​. Thus,

(7)	​ a​ i​ ∗​​( q° )​  = ​ { ​  ​_ ​q​i​ ​
 

  
 ​G​ i​ −1​​( q° )​   

​​q​i​ _​

 ​  ​
if

 
 

 if   

if

​ ​ 
q° > ​G​i​​( ​

_
 ​q​i​ ​ )​,
  

   
  q° ∈ ​[ ​G​i​​( ​​q​i​ _​ )​, ​G​i​​( ​

_
 ​q​i​ ​ )​ ]​,       

q° < ​G​i​​( ​​q​i​ _​ )​.
 ​ 

​

​ 

From these expressions, we see that the optimal threshold ​a​ i​ ∗​​( q° )​ is a nondecreasing 
function of the outside option q°, intuitively, the principal will be more selective 
when her outside option is better. We also note that if the value of the outside option 
is at least as large as the worse project q° ≥ ​​q​i​ _​ , then the threshold is smaller than 
or equal to the outside option ​a​ i​ ∗​​( q° )​ ≤ q°. This means that some projects may be 
selected even if their reported return is lower than that of the outside option. The 
reason for this is that a wider range of selection reduces the need to offer transfers.

Let the value of the optimal threshold mechanism to the firm, given q°, be

(8)	​ V ​∗​​( q° )​  = ​ max   
a
  ​ V​( a, q° )​  =  V​( ​a​ i​ ∗​​( q° )​, q° )​.

B. Best Threshold Mechanism versus the Outside Option Mechanism

The outside option mechanism is not a threshold mechanism. Therefore, we still 
need to compare the value of the optimal threshold mechanism with the outside 
option q°. For any project i (characterized by a distribution of project qualities and 
a private benefit function), we find the value of the outside option ​g​ i​ °​ that makes 
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the firm indifferent between the best threshold mechanism and the outside option 
mechanism. We refer to this value of the outside option as the cap. If the outside 
option exceeds the cap ​g​ i​ °​, then the firm should stick to the outside option mecha-
nism—always select the outside option and never provide transfers. If the outside 
option is lower than the cap, then the firm should use the optimal threshold mecha-
nism which sometimes selects the project and other times selects the outside option. 
The cap ​g​ i​ °​ only depends on project i ’s observable characteristics. It will play an 
important role in the analysis of the general case in Section IV.

Lemma 1: There exists a quality ​g​ i​ °​ ∈ ​[ E​[ ​q​i​ ]​, ​G​i​​( ​
_
 ​q​i​ ​ )​ ]​, unique in ℝ, such that

(9)	​ V ​∗​​( ​g​ i​ °​ )​  − ​ g​ i​ °​  =  0.

The threshold mechanism can be thought of as if the firm offers the candidate 
a choice between being selected for the project and being paid a fixed monetary 
amount. The optimal monetary amount that the firm should offer and the expected 
transfer to the candidate are nondecreasing functions of the quality of the outside 
option. Essentially, the firm buys information on the quality of the project. The better 
the outside option, the higher the price the firm must pay to elicit this information. 
If the quality of the outside option is high enough (exceeds the cap ​g​ i​ °​  ), it is better 
to chose the outside option without eliciting any information.

C. Firm’s Optimal Profit

We now derive a simple expression of the firm’s optimal profit. Consider first 
the case q° ≤ ​g​ i​ °​, so that the optimal threshold mechanism dominates the outside 
option mechanism. Using (8) at q° and ​g​ i​ °​, and taking the difference between the two 
expressions, we obtain

	​ V ​∗​​( q° )​ − ​V ​∗​​( ​g​ i​ °​ )​  =  ​∫​ 
​a​ i​ ∗​​( q° )​

​ 
​a​ i​ ∗​​( ​g​ i​ °​ )​

​​G​i​​( ​q​i​ )​   ​f​i​​( ​q​i​ )​ d​q​i​  +  q°F​( ​a​ i​ ∗​​( q° )​ )​ − ​g​ i​ °​ F​( ​a​ i​ ∗​​( ​g​ i​ °​ )​ )​.

Using ​V ​∗​​( ​g​ i​ °​ )​ = ​g​ i​ °​ and rearranging terms,

 ​ V ​∗​​( q° )​  =  q°F​( ​a​ i​ ∗​​( q° )​ )​  + ​ ∫​ 
​a​ i​ ∗​​( q° )​

​ 
​a​ i​ ∗​​( ​g​ i​ °​ )​

​​G​i​​( ​q​i​ )​ ​f​i​​( ​q​i​ )​    d​q​i​  + ​ g​ i​ °​​( 1 − F​( ​a​ i​ ∗​​( ​g​ i​ °​ )​ )​ )​

	 = ​ ∫​ 
​​q​i​ _​
​ 

​a​ i​ ∗​​( q° )​
​q° ​f​i​​( ​q​i​ )​ d​q​i​  + ​ ∫​ 

​a​ i​ ∗​​( q° )​
​ 

​a​ i​ ∗​​( ​g​ i​ °​ )​
​​G​i​​( ​q​i​ )​  ​f​i​​( ​q​i​ )​ d​q​i​  + ​ ∫  ​ 

​a​ i​ ∗​​( ​g​ i​ °​ )​
​ 

​_ ​q​i​ ​
  ​ ​g​ i​ °​ ​f​i​​( ​q​i​ )​ d​q​i​

	 =  E(max{min ​{ ​G​i​​( ​q​i​ )​, ​g​ i​ °​ }​, q° }).

The third equality is true because q° ≤ ​G​i​​( ​q​i​ )​ if and only if ​a​ i​ ∗​​( q° )​ ≤ ​q​i​ , and because ​
g​ i​ °​ ≤ ​G​i​​( ​q​i​ )​ if and only if ​a​ i​ ∗​​( ​g​ i​ °​ )​ ≤ ​q​i​.
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Let the virtual quality of the project be denoted by

(10)	​ x​i​  =  min ​{ ​G​i​​( ​q​i​ )​, ​g​ i​ °​ }​.

The project is selected if its virtual quality exceeds the outside option, otherwise the 
outside option is chosen. Hence,

(11)	​ V ​∗​​( q° )​  =  E(max​{ ​x​i​, q° }​.

In the case where the outside option is better than the optimal threshold mecha-
nism, i.e., q° ≥ ​g​ i​ °​, the profit of the firm at the optimal mechanism is q°, which also 
equals expression (11). Therefore, expression (11) describes the optimal profit of 
the firm for any outside option q°.

An implication of these derivations is that there are projects for which the deci-
sion maker never elicits information from the manager regardless of what the outside 
option is, and, for this reason, the manager will also never receive any compensa-
tion. For such a project the virtual quality is constant ​x​i​ = ​g​ i​ °​ = E​( ​q​i​ )​ for all ​q​i​ , and 
the project will be selected if an only if its expected value E​( ​q​i​ )​ exceeds the outside 
option q°. We provide a necessary and sufficient condition for the manager’s report 
to be ignored in the following proposition.

Proposition 1: A project’s virtual quality is constant and equals ​g​ i​ °​ = E​( ​q​i​ )​ if 
and only if ​f​i​​( · )​ and ​b​i​​( · )​ satisfy the inequality ​b​i​​( ​​q​i​ _​ )​ ≥ E​( ​q​i​ )​ − ​​q​i​ _​.

According to the condition in Proposition 1, the decision maker is more likely 
to ignore the manager’s reports when the manager has a lot to benefit, even from 
the lowest quality project, or when the distribution of project qualities exhibits less 
uncertainty in a mean preserving spread order. In other words, transfers are used to 
elicit information when the cost (the need to compensate) is not too high and the 
benefit (avoiding the need to finance low quality projects) is high.

In the next section, we use the derivations we made for the single project case 
to solve the problem of choosing m out of n projects. When multiple projects are 
available, for each project we define the virtual quality as in (10). We generalize the 
expression in (11) for the optimal value and suggest a candidate’s optimal mecha-
nism—the highest m virtual quality projects should be selected when these exceed 
the outside option. Our proof for the general case confirms that the optimal thresh-
old mechanism we derived for the single project case is optimal among all feasible 
direct mechanisms.

III.  Optimal Mechanisms in the General Case

We search for a profit maximizing incentive compatible mechanism with a fea-
sible project selection rule and transfers that satisfy the limited liability constraint. 
For simplicity, and without loss of generality, we will assume that the outside option 
has quality q° = 0.
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A. Optimal Mechanisms

If information was symmetric, the firm would have always selected the m high-
est quality projects (or as many that are better than the outside option). However, 
the manager’s private information on project qualities is costly for the firm to elicit. 
Because each project manager benefits if his project is selected, absent compen-
sation, selecting the highest quality projects creates an incentive for managers to 
overstate the quality of their projects. In any incentive compatible mechanism the 
firm needs to compensate project managers for truth telling. Thus, when choosing 
projects the firm takes into account not only the quality of projects but also the cost 
of eliciting information. This is done by choosing the m highest virtual quality proj-
ects instead of simply the highest m quality projects.

Given a vector of real numbers x = ​( ​x​1​, … , ​x​n+m​ )​, let ​( ​x​​( 1 )​​, … , ​x​​( n+m )​​ )​ denote 
the order statistics of x, i.e., the vector obtained by sorting the coordinates of x in 
a nonincreasing order, so that ​x​​( 1 )​​ ≥ ⋯ ≥ ​x​​( n+m )​​. Let ​S​m​​( ​x​1​, … , ​x​n+m​ )​ be the sum 
of the first m coordinates of the order statistics vector, i.e., the sum of the m highest 
coordinates of x.

The firm needs to choose at most m out of n projects, it obtains its outside option 
of q° = 0 for a project not selected. Let us represent its problem as a choice of 
exactly m projects from the set of the  n + m project that contains the original 
n projects and in addition m projects that have a known quality q° = 0. For any 
(n-dimensional) vector of project qualities q we define an (n + m)-dimensional 
vector of virtual project qualities:

(12)	 x(q)  =  (min ​{ ​G​1​​( ​q​1​ )​, ​g​ 1​ ° ​ }​, … , min ​{ ​G​n​​( ​q​n​ )​, ​g​ n​ ° ​ }​, 0, … , 0) ,	 3
	 m times

where ​G​i​ and ​g​ i​ °​ are defined in (5) and (9). The first n coordinates represent the 
virtual qualities of the n projects as we derived for the single project case in (10) in 
Section III. The last m coordinates represent the outside option, which can replace 
each of the m selections.

For the vector of virtual qualities x(q) in (12), ​x​(m)​(q) is its mth highest coordi-
nate. There may be multiple projects with this virtual quality. The allocation we 
propose selects with probability 1 any project that has a virtual quality that is strictly 
higher than the mth highest virtual quality (there are less than m such projects). For 
the remaining selections, the mechanism chooses with equal probabilities projects 
from the set of (one or more) projects that have the mth highest virtual quality. Other 
projects are not selected.

(13)	​ p​ i​ ∗​​( q )​ = ​ {  ​  1

  
     

   ​ 
m − ​| i ∈ ​{ i ∈  : ​x​i​​( q )​ > ​x​(m)​​( q )​ }​ |​

   ___   ​| ​{ i ∈  : ​x​i​​( q )​ = ​x​(m)​​( q )​ }​ |​  ​         

0

 ​ ​ 

if

 
 

 if 
 

 

if

​ ​

​x​i​​( q )​ > ​x​(m)​​( q )​

  
  

  ​x​i​​( q )​ = ​x​(m)​​( q )​      

​x​i​​( q )​ < ​x​(m)​​( q )​

​. 

​

​
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With this allocation, ​x​(m)​(q) is the lowest virtual quality that is selected with a pos-
itive probability. To find transfers that ensure this allocation is incentive compatible 
we first find the quality of project i such that G(​q​ i​ m​) yields the virtual quality ​x​(m)​(q) 
(when it exists). For each i ∈ , let ​q​ i​ m​ = ​a​ i​ ∗​​( ​x​(m)​(q) )​. For the allocation rule ​p​ i​ ∗​​( q )​ 
to be incentive compatible transfers are as follows

(14)	​ t​ i​ ∗​​( q )​  =  ​( ​p​i​​( ​
_
 ​q​i​ ​, ​q​−i​ )​  − ​ p​i​​( q )​ )​ ​b​i​(​q​ i​ m​).

With these transfers, a project that is selected with probability ​p​i​ = 1 receives no 
transfer ​t​ i​ ∗​ = 0. For a project selected with probability ​p​i​ = 0, the transfer equals 
the highest expected benefit from misreporting. A manager with quality lower but 
arbitrarily close to ​q​ i​ m​ is not selected and his transfer should be arbitrarily close to ​
p​i​​( ​

_
 ​q​i​ ​, ​q​−i​ )​ ​b​i​(​q​ i​ m​) because he can misreport ​

_
 ​q​i​ ​. Hence, ​p​i​​( ​

_
 ​q​i​ ​, ​q​−i​ )​ ​b​i​(​q​ i​ m​) must be the 

transfer of any manager with ​p​i​ = 0 who could report a quality arbitrarily close to ​
q​ i​ m​. A manager with ​p​i​ ∈ (0, 1) receives a positive transfer only if ​p​i​​( ​

_
 ​q​i​ ​, ​q​−i​ )​ = 1.

The following theorem generalizes the results obtained for the case m = n = 1 in 
Section III to the general case n ≥ m ≥ 1. Let ​V​m​ denote the optimal profit for the 
firm that can select up to m projects. The optimal profit for the firm is the expected 
value of the sum of the highest m virtual qualities out of the n + m available virtual 
qualities.

Theorem 1: The project selection mechanism defined by the allocation rule (13) 
and the transfer (14) solves the problem stated in (1)–(4). It gives the firm the opti-
mal profit

(15)	​ V​m​  = ​ E​q​​[ ​S​m​​( x(q) )​ ]​.

In the following corollary, we describe the allocation rule of the optimal mecha-
nism when all projects are ex ante symmetric.

Corollary 1: In the symmetric problem, ​g​ 1​ ° ​ = ⋯ = ​g​ n​ ° ​ := g°. (i) If all 
projects have negative virtual qualities ​x​i​ = min ​{ ​G​i​​( ​q​i​ )​, g° }​ < 0, then the out-
side option is selected; (ii) If there are at least m projects in the sample such that 
G​( ​q​i​ )​ ≥ g° ≥ 0, then in an optimal mechanism, m of these projects are selected at 
random; (iii) Otherwise, the m (or less) projects satisfying G​( ​q​i​ )​ ≥ 0 whose quali-
ties rank among the m highest are selected.

In the symmetric case, when sufficiently many projects have a quality that exceeds 
a threshold quality, selection among these top candidates is random, and therefore a 
lower quality project can be selected over a higher quality one. The mechanism we 
propose in Theorem 1 is essentially the only symmetric optimal mechanism, except 
in the boundary case where g° = 0. However, even in the generic case ​( g° ≠ 0 )​, 
nonsymmetric generalizations of the proposed mechanism, which assign fixed (not 
necessarily equal) selection probabilities to agents whose virtual qualities equal the 
mth highest virtual quality, are also optimal. The results for the symmetric case are 
illustrated in the following example.
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Example 1: Suppose that the projects are ex ante symmetric, and that the qual-
ity is uniformly distributed on ​[ 0, 1 ]​ and that the private benefit is a constant 
b ∈ ​( 0, 0.5 )​. In the optimal mechanism (see Figure 1), when at least 1 project man-
ager reports a quality that is lower than the cutoff ​a​∗​ = 1 − ​√ 

_
 2b ​, the highest qual-

ity project is selected. However, in the top region, where ​q​1​, ​q​2​ ≥ ​a​∗​, the 2 projects 
are selected with equal probabilities ​p​i​ = 0.5. Hence, a less efficient project may be 
selected. Figure 1, panel A illustrates the project selection probabilities. Transfers 
are shown in Figure 1, panel B. Compensation for the manager whose project was 
not selected is just enough to ensure incentive compatibility. Hence, it equals 0 
if this manager’s reported quality was higher than ​a​∗​, otherwise, it equals b if the 
selected project had a quality below ​a​∗​ and 0.5b if it exceeded ​a​∗​.

B. Optimal versus Constant Mechanisms

In Section II, we showed that when there is only one project to evaluate against 
the outside option, it is sometimes optimal not to elicit any information from its 
manager. Here, we ask a similar question, when there are several candidate projects. 
We consider the family of simpler mechanisms that do not attempt to elicit informa-
tion from managers. In such mechanisms the allocation does not depend on reported 
qualities and no transfers are made to the managers. We refer to these mechanisms as 
constant mechanisms. The optimal mechanism we derived before clearly generates 
at least as high a profit to the firm as any constant mechanism (constant mechanisms 
are a subset of all mechanisms we considered). Following Theorem 1, we ask, when 
is the optimal mechanism strictly better than the best constant mechanism? We first 
provide conditions for a mechanism to be optimal among all constant mechanisms.

Lemma 2: For any  ⊂  with ​|  |​ ≤ m, the constant mechanism that selects 
the subset of projects  is optimal among all constant mechanisms if and only if

	 max​{  ​ max   
j  ∈    \

​ E​[ q​ ​j​ ]​, 0 }​  ≤ ​ min   
i∈

 ​ E  ​[ ​q​i​ ]​

and

	​ |  |​  <  m  ⇒ ​  max   
j∈    \

​ E​[ q​ ​j​ ]​  ≤  0.

The first condition states that the least attractive project that is selected is better 
than the best project that is not selected, and also better than the outside option (zero 
return). The second condition states that if less than the m projects are selected, 
the best project that is not selected is less preferred than the outside option. From 
Theorem 1 and Lemma 2, we now derive conditions under which a constant mecha-
nism is optimal among all mechanisms.

For the best constant mechanism  to coincide with the optimal mechanism, the 
allocations of the two mechanisms must coincide for any realization of q. This is 
equivalent to say that the virtual quality of any project i in  must be greater than 
the virtual quality of any project j outside of , and also greater than the outside 
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option 0, for any realization of q. For this condition to hold it is sufficient (and 
clearly also necessary) that it holds for the realization of q, which is worst for proj-
ects in  and, at the same time, is best for projects not in . In the worst case sce-
nario for a project i in , its virtual quality either equals ​​q​i​ _​ + ​b​i​​( ​​q​i​ _​ )​, if for project 
i, ​b​i​​( ​​q​i​ _​ )​ + ​​q​i​ _​ ≥ E​( ​q​i​ )​ or else it equals E​( ​q​i​ )​. In the best case scenario for a project 
j outside of them , its virtual quality equals g​ ​ j​ °​  . In the case where  contains 
less than m projects, optimality among all mechanisms also requires that in the best 
realization for any project j outside of , its virtual quality g​ ​ j​ °​   is also smaller than 
the outside option 0. We summarize these conditions in the following result.

Corollary 2: An optimal constant mechanism that selects a subset of projects 
 is optimal among all mechanisms if and only if

	 max ​{  ​ max    
j∈  \

​ ​{ g​ ​ j​ °​  }​ , 0 }​  ≤ ​ min   
i∈

 ​ min ​{ E​[ ​q​i​ ]​, ​​q​i​ _​ + ​b​i​​( ​​q​i​ _​ )​ }​

and

	​ |  |​ < m  ⇒ ​  max    
j∈  \

​ g​ ​ j​ °​ ≤ 0.

When the conditions of the corollary are not satisfied for any subset , the 
optimal mechanism is not a constant one and involves eliciting private informa-
tion through transfers. Interestingly, one can construct examples where the optimal 
mechanism improves upon the outside option mechanism, even though the outside 
option mechanism happens to be the optimal constant mechanism. In such situa-
tions, using the optimal mechanism enables the firm to select a project, although 
it wouldn’t have selected any if only constant (independent of reported qualities) 
mechanisms were allowed. The following result provides the necessary and suf-
ficient conditions, as a direct implication of Corollary 2.

Panel A. Probabilities of selection in the optimal
symmetric mechanism with b
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Corollary 3: The outside option is the best constant mechanism and is inferior 
to the optimal mechanism if and only if for all j in , E​( q​ ​j​ )​ ≤ 0, and for some i in 
, ​g​ i​ °​ > 0.

The first inequality ensures that the outside option mechanism is the best con-
stant mechanism. The second inequality ensures that it is inferior to the optimal 
mechanism. These conditions are likely to be satisfied if all projects have a negative 
expected quality, but at least one of the candidate projects has a highly uncertain 
quality relative to its manager’s willingness to be selected.6

IV.  Comparative Statics

In this section, we provide comparative statics results on the number of projects, 
the private benefit function, and the distribution of quality.

A. The Number of Projects

We have computed the optimal project selection mechanism for a fixed number of 
projects n. The caps ​g​ i​ °​, defined in (9), that we use to define the optimal mechanism 
only depends on the characteristics of project i, not on other projects’ characteristics, 
nor on the number of candidate projects. However, the profit of the firm does depend 
on the number of available projects to choose from. We first observe that when the set 
of projects the firm can select from expands, for a fixed m, profit (weakly) increases. 
To see this, consider a firm that originally faced selection between n projects now 
faces selection between these same projects and one additional n + 1th project. A 
mechanism that treats the first n projects just like when these where the only projects 
and ignores the last project, ​t​n+1​(q) = ​p​n+1​(q) = 0 for all q, is feasible and achieves 
the same profit as before. Hence, with the optimal mechanism profit is at least as high.

In the symmetric case and for a fixed m, one can show that the optimal expected 
profit (15) is concave in n.7 In the general case, while profit increases as the set of 
available projects expands, as long as project quality is bounded, so is the expected 
profit. In the following proposition we derive a limit result. Suppose that the set of 
projects is randomly chosen from some population. The distribution of the caps 
​g​ i​ °​ defined in (9) determines the profit per project in the limit as the number of proj-
ects to choose from goes to infinity.

Proposition 2:

	 (i)	 Suppose that the vectors ​( ​g​ i​ °​, ​q​i​ )​ of caps and project qualities are indepen-

dently and identically drawn from a continuous distribution.8 Let ​[ ​​g​ i​ °​ _​, ​
_
 ​g​ i​ °​ ​   ]​ be 

6 See the comparative statics on mean preserving spreads at the end of Section V.
7 This is because the expected value of each of the kth order-statistics for k = 1, … , m of an n + m dimensional 

independently and identically distributed random vector is concave in n. The firm’s profit is the sum of the first m 
order-statics of the vector of virtual qualities.

8 Note that the assumption requires independence across projects, but project i ’s quality and the cap associated 
with that project may be dependent.
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the support of the marginal distribution of ​g​ i​ °​. Suppose that the conditional 
cumulative distribution function F​( · | ​g​ i​ °​ )​ are such that any distributions 
conditional on a higher value of ​g​ i​ °​ first order stochastically dominates a 
distributions conditional on a lower ​g​ i​ °​. Then for a fixed m, in the limit where 
n goes to infinity, the profit of the firm at the optimal mechanism converges in 

probability to m ​
_
 ​g​ i​ °​ ​.

	 (ii)	 In the symmetric case, where all thresholds equal g°, the profit of the firm as 
the number of projects increases to infinity converges in probability to mg°.

The second part of this proposition provides an asymptotic interpretation of the 
cap ​g​ i​ °​ of a project i. It is the limit of the per selected project return when the number 
of available projects approaches infinity and all candidate projects are ex ante identi-
cal to project i, i.e., they all have the same cap ​g​ i​ °​.

The number of projects available to a firm to choose from is likely, however, to be 
finite. The number of skilled researchers in the relevant technology might be limited. 
It is likely costly to increase the pool of potential projects identifying candidates and 
the relevant distribution from which their quality is drawn. There can also be admin-
istrative costs to consider more projects. In the following example we derive the profit 
from choosing one project (m = 1) as a function of the number of projects n in the 
symmetric model when project qualities are uniformly distributed and benefits are 
constant. This profit is increasing and concave in n. Hence, accounting for some con-
vex cost c(n), there would be a unique optimal finite number of projects.

Example 2: Suppose b​( ​q​i​ )​ = b < 0.5 for all ​q​i​ and that the distribution is uni-
form on ​[ 0, 1 ]​. The firm faces a choice of m = 1 out of n projects. Then,

(16)	​ g​ i​ °​  =  1  − ​ √ 
_

 2b ​  +  b.

(17)	​ a​∗​  ≡ ​ a​∗​​( ​g​ i​ °​ )​  =  1 − ​√ 
_

 2b ​ .

In the optimal mechanism, if at most one project has a quality that exceeds 
1 − ​√ 

_
 2b ​, the highest quality project would be selected. If two or more project 

qualities exceed this cutoff, one of the projects with a quality higher than 1 − ​√ 
_

 2b ​ 
would be selected at random. The expected profit for the firm is

(18)	 V​( n )​  = ​  1 _ 
2
 ​ (1  + ​ a​∗2​)  − ​  ​a​∗n+1​ _ 

n + 1
 ​.

The profit V(n) is increasing and concave in the number of projects n. As the number 
of projects approaches infinity, V​( n )​ → 0.5(1 + ​a​∗2​) = 1 − ​√ 

_
 2b ​ + b = ​g​ i​ °​.

B. Changes in Private Benefits

Here, we study the effect on the optimal mechanism of changes in the benefit 
functions ​b​i​.
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Asymmetric Benefits.—In the general asymmetric case, let i be an arbitrary proj-
ect. Consider a change in project ​i′​  s benefit function from ​b​i​​( · )​ to another benefit 
function ​​ b ​​i​​( · )​ for project i, such that ​​ b ​​i​​( ​q​i​ )​ < ​b​i​​( ​q​i​ )​ for all ​q​i​, but no other change in 
the fundamentals of the model. How does this change affect the optimal mechanism 
and profit?

Let V and ​  V​, respectively, denote the profit of the firm under the benefit functions ​
b​i​​( · )​ and ​​ b ​​i​​( ·  )​. We will show that V ≤ ​  V​. To see this, observe that under the benefit 
function ​b​i​​( · )​, the value V is achieved by the optimal mechanism defined by (13) 
and (14). Under the benefit function ​​ b ​​i​​( · )​, this same allocation ​p​∗​​( · )​ defined by (13) 
is implemented, provided that transfers (14) are replace by transfers, such that

	​​  t ​​i​​( q )​  =  ​ ( ​p​i​​( ​​
_
 q ​​i​, ​q​−i​ )​  − ​ p​i​​( q )​ )​ ​​ b ​​i​(​q​ i​ m​).

This mechanism is feasible under the benefit function ​​ b ​​i​​( · )​, i.e., it satisfies the con-
straints (2), (3), and (4). Since ​​ b ​​i​​( ​q​i​ )​ < ​b​i​​( ​q​i​ )​ for all ​q​i​  , this mechanism gives the 
firm a higher profit than the initial one. This mechanism may not be optimal under 
the benefit function ​​ b ​​i​​( · )​, but the optimal expected profit of the firm is at least the 
profit achieved by this mechanism. Thus, the firm’s optimal profit is higher under 
​​ b ​​i​​( · )​ than under ​b​i​​( · )​, which shows that a decrease of the benefit function raises the 
firm’s optimal profit.

We now study the effect of ​b​i​ on the cap ​g​ i​ °​ for project i. Suppose that manager 
i ’s private benefit depends on a real parameter λ, so that the benefit function is 
​b​i​​( ​q​i​  , λ )​ which is increasing in ​q​i​ and in λ. From the analysis in Section III, we 
know that the cap ​g​ i​ °​ is determined by the following equation:

	​ max   
a
  ​ ​{ ​g​ i​ °​ ​F​i​​( a )​ − ​b​i​(a, λ)​F​i​​( a )​  + ​ ∫ ​ 

a
​ 
​_ ​q​i​ ​
​​q​i​ ​f​i​​( ​q​i​ )​ d​q​i​ }​  − ​ g​ i​ °​  =  0.

Abusing notations, let ​a​ i​ ∗​ ≡ ​a​ i​ ∗​​( ​g​ i​ °​, λ )​. By implicit differentiation,

	​ 
d​g​ i​ °​ _ 
dλ

 ​  =  − ​ 
​F​i​​( ​a​ i​ ∗​ )​ _  

​( 1 − ​F​i​​( ​a​ i​ ∗​ )​ )​
 ​ ​ 

∂ ​b​i​(​a​ i​ ∗​, λ)
 _ 

∂λ
 ​   <  0.

Thus, increasing λ decreases the cap ​g​ i​ °​ for project i.
What is the effect of increasing λ on the quality threshold ​a​ i​ ∗​ ? Since this function is 

increasing in ​g​ i​ °​, the indirect effect of increasing λ is to decrease ​a​ i​ ∗​, via ​g​ i​ °​. However, 
the direct effect is unclear as it also depends on how the shift changes the slope of ​b​i​. 
One can sign this direct effect as well, under the additional assumption that increasing 
λ (weakly) increases both the private benefit ​b​i​ and its slope ∂  ​b​i​/∂  ​q​i​. Notice that this 
includes the case of a vertical shift of the form ​b​i​​( ​q​i​, λ )​ = ​b​i​​( ​q​i​ )​ + λ. Under these 
assumptions, the threshold ​a​ i​ ∗​ is decreasing in the shift λ.

Fixing the other projects’ reported qualities ​q​−i​, the effect of an increase in λ 
(and thus in ​b​i​​( · )​) on the set of qualities ​q​i​, at which project i is selected (and thus 
on the selection probability of project i ), is nonmonotonic. It first enlarges it, but at 
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some point may discontinuously reduce it to the empty set. To see this, consider the 
case where project i is the unique candidate project evaluated only against an outside 
option q°, as in Section III. An increase in λ decreases the optimal quality threshold ​
a​ i​ ∗​​( q° )​ above which project i is selected, and therefore increases the selection prob-
ability of project i. But the value of the optimal threshold mechanism also decreases 
and at some point becomes inferior to the outside option mechanism. When this 
occurs, the selection probability of project i jumps down to zero.

The above results also enable us to compare caps and thresholds in an asymmetric 
problem. If two projects have the same quality distributions, but one has a higher 
private benefit ​b​i​​( · )​ than the other, it has a lower cap ​g​ i​ °​. If it also has a higher benefit 
slope ∂  ​b​i​/∂  ​q​i​  , it then also has a lower threshold ​a​ i​ ∗​. These results are illustrated in 
the following example.

Example 3: Let n = 2 and m = 1. Consider the optimal mechanism when quali-
ties are drawn from the same distribution ​F​1​(·) = ​F​2​​( · )​; private benefits are constant ​
b​2​ > ​b​1​ ≥ 0; and also assume E(q) > ​​q​i​ _​ + ​b​i​, so that ​a​ i​ ∗​ > ​​q​i​ _​. Then ​g​ 1​ ° ​ ≥ ​g​ 2​ ° ​ and ​
a​ 1​ ∗​ > ​a​ 2​ ∗​. We observe some interesting properties of the optimal mechanism in this 
example. When both qualities exceed their corresponding cutoffs ​q​i​ ≥ ​a​i​, project 1, 
belonging to the manager whose private benefit is lower, is selected. This would give 
project manager 2 (who is most eager to be selected) less of an incentive to overstate 
his success probability. Therefore, there is a range of qualities for which project 1 
is selected even though it has a lower quality. There is also a range of probabilities 
where project 2 has a lower quality than project 1 yet project 2 is selected. This will 
occur in the range where both probabilities are below their corresponding cutoffs, ​
q​i​ < ​a​ i​ ∗​, and ​( ​q​1​, ​q​2​ )​ lies below the 45 degrees but above the ​G​1​​( ​q​1​ )​ = ​G​2​​( ​q​2​ )​ 
curve (which is given by ​q​2​ = ​q​1​ − (​b​2​ − ​b​1​)). In this case, project 2 has a lower 
quality but a higher virtual quality than project 1 ​( ​q​2​ < ​q​1​ < ​q​2​ + ​b​2​ − ​b​1​ )​, and it 
is selected despite the fact that project 1 has a higher quality.

Symmetric Benefits.—In the symmetric case, consider an upward shift on the 
common private benefit b​( · )​, while the distribution F​( · )​ is held constant. Let the 
private benefit of all managers be b​( ​q​i​ , λ )​, which is increasing in ​q​i​ and in λ. From 
the analysis of the asymmetric case, increasing λ decreases both the common cap ​g​ i​ °​ 
and the optimal expected profit of the firm. If in addition ∂b/∂​q​i​ is also increasing 
in λ, then increasing λ also decreases the common quality threshold ​a​∗​. This results 
in a larger pooling region at the top. The set of quality profiles at which the highest 
quality project is not necessarily selected grows.

C. Changes in the Distribution

One can study the effects of a first-order stochastic-dominant shift of the distri-
bution ​F​i​​( · )​ for an arbitrary project i, while holding all other parameters constant. 
Using similar arguments as in the previous subsection, one can show that such a 
shift increases the expected profit of the firm and project i  ’s cap ​g​ i​ °​. The effect of the 
shift on the quality threshold ​a​ i​ ∗​ ≡ ​a​ i​ ∗​​( ​g​ i​ °​ )​ is ambiguous, but under the additional 
assumption that ​b​i​​( · )​ is a constant, one can show that the shift increases ​a​ i​ ∗​. Notice, 
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however, that the probability ​F​i​​( ​a​ i​ ∗​ )​ that the quality is lower than ​a​ i​ ∗​ can move in 
either direction, since ​a​ i​ ∗​ moves up but ​F​i​​( · )​ moves down. An application of these 
results is given in the following example.

Example 4: Let n = 2 and m = 1. Consider the optimal mechanism when 
​F​1​(·) first-order stochastically dominates ​F​2​​( · )​ but private benefits are constant and 
equal ​b​2​ = ​b​1​ = b. Then ​g​ 1​ ° ​ > ​g​ 2​ ° ​ and ​a​ 1​ ∗​ > ​a​ 2​ ∗​. When both qualities exceed their 
corresponding cutoffs, the virtual qualities are ​g​ i​ °,​ and so project 1 is selected.

Similarly, one can study the effect of a mean preserving spread on the distribution ​
F​i​​( · )​ for an arbitrary project i, while holding all other parameters constant.9 Little 
can be said in this case, if the benefit ​b​i​ depends nontrivially on ​q​i​. If ​b​i​ is constant, 
again using the same type of arguments as in the previous subsection, and the fact 
that the function max ​{ q° − ​b​i​, ​q​i​ }​ is convex in ​q​i​ for any fixed q°, one can show that 
such a spread increases the expected profit of the firm, project i’s cap ​g​ i​ °,​ and the qual-
ity threshold ​a​ i​ ∗​ ≡ ​a​ i​ ∗​​( ​g​ i​ °​ )​. Here also, the probability ​F​i​​( ​a​ i​ ∗​ )​ that the quality is lower 
than ​a​ i​ ∗​ can move in either direction, since ​F​i​​( ​q​i​ )​ moves up or down depending on 
​q​i​. An application of these results is given in the following example.

Example 5: Let n = 2 and m = 1. Consider the optimal mechanism when ​F​1​(·) 
is a mean preserving spread of ​F​2​​( · )​ but private benefits are constant and equal 
​b​2​ = ​b​1​ = b. Then ​g​ 1​ ° ​ > ​g​ 2​ ° ​ and ​a​ 1​ ∗​ > ​a​ 2​ ∗​. When both qualities exceed their corre-
sponding cutoffs, the virtual qualities are ​g​ i​ °​, and so project 1 is selected.

V.  Generalizations

In this section, we informally describe directions in which our model can be gen-
eralized, and how the optimal mechanism would change. We provide corresponding 
formal derivations in an online Appendix. We first allow transfers to be contingent 
on the realization of project selection and outcomes. We next consider agents that 
have interests that are at least partially aligned with those of the firm. Finally we 
allow negative benefit functions so that some agents do not want to be selected.

A. State Contingent Transfers

In the analyses in the previous sections, we have considered mechanisms that 
only depend on reported qualities—the only information available to the firm when 
it is making a selection. In this section, we ask whether the firm can do better if it 
were able to make transfers contingent on the realized return of the projects that 
were selected. For example, if project quality represents the probability of success 
of the project, and the firm can observe ex post whether the selected project suc-
ceeded, then the transfer can depend on success. If state dependent mechanisms are 

9 Recall that ​  F​ is a mean-preserving spread of F if the two distributions have the same expected value; and for 
any concave function u​( · )​ of ​q​i​, we have ​E​​  F​​​[ u​( ​q​i​ )​ ]​ ≤ ​E​F​​[ u​( ​q​i​ )​ ]​.
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available, the firm would generally achieve a higher profit than when transfers can 
only depend on reported probabilities.

To consider state contingent transfers we introduce a state space describing pos-
sible realized returns of the financed projects. The project quality that is known to 
the managers is the expected return of the project. We provide an upper bound on the 
value that the firm can obtain when it can pay transfers contingent on the realization 
of both the project stochastic allocation, and the selected projects’ outcomes. A state 
s = ​( , R )​ indicates the set of projects (if any) that were selected  ⊂  and the 
realization of the return of the projects that were selected R ∈ ​ℝ​|  |​. A mechanism 
is a function ​( ​  q​, s )​ ↦ ​( p​( ​  q​ )​, t​( ​  q​, s )​ )​. We then write the constraint optimization 
problem, accounting for this larger space of mechanisms. We impose incentive con-
straints and the limited liability constraints that have to hold state by state.

The solution method for this problem follows similar steps as in Sections II and III. 
We derive an upper bound for the optimal value, and then propose a mechanism that 
satisfies the constraints and (here only approximately) achieves the upper bound.

The optimal mechanism with state dependent transfers is characterized by a simi-
lar project selection rule as that with deterministic transfers. In particular, in the 
symmetric case, project selection is inefficient in the region where several manag-
ers report project qualities that exceed a cutoff. However, while with determinis-
tic transfers the highest quality projects are selected for sure outside this region, 
with state dependent transfers, the firm could approach maximum profits if it allows 
low-reported probability projects to be selected with some small probability, and 
highly rewards a favorable outcome in the unlikely event that the low-quality proj-
ect is selected. This can allow the firm to pay lower expected transfers to managers 
who report low quality and obtain a higher profit than with deterministic transfers. 
Interestingly, however, when private benefits are constant (​b​ i​ ′​(​q​i​) = 0) the optimal 
mechanism with state dependent transfers is identical to that when transfers can 
only depend on reported probabilities. Hence, in this special case, nothing is gained 
from allowing the richer set of mechanisms.

B. Agents with Partially Aligned Interests

In some environments, an agent might have interests that are at least partially 
aligned with those of the firm, and so the agent might prefer some other agent’s 
project to be implemented over his own, if the quality difference is high. In such 
a situation, a manager enjoys some private benefit not only when his own project 
is selected, but also when another manager’s project is selected. It is natural to 
assume that the benefit that manager i receives increases with the quality of the 
financed project. But for a given project quality, the manager’s payoff is higher if 
his own project is selected. In the extreme case where manager i’s benefit func-
tions are the same function whether his own project is implement or another man-
ager’s project is implemented, the agent prefers the highest quality project to be 
selected, regardless of whether it is his own project. In such a case, the interests 
of the agents and the financing agency are perfectly aligned. A mechanism that 
chooses the highest reported quality project and never offers transfers would be 
optimal. However, when at least for some qualities ​q​i​, an agent enjoys his own 
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project being financed more than someone else’s project with the same quality, an 
adverse selection problem remains.

In section C of the online Appendix, we formally derive the optimal mechanism for 
this version of the model. We solve this model under the assumption that when another 
project’s quality is not much higher, the benefit from being selected is higher than 
the benefit from the other project being selected. The analysis and results are similar 
to those in the previous sections. Any allocation implementable in the main model is 
implementable in the model with partially aligned interests, with lower transfers. This 
is because when another agent is selected, that serves as partial compensation to the 
nonselected agents. Thus, profits in the model with partially aligned interests are higher.

C. Agents That Prefer Not to Be Selected

In our model, we have assumed that ​b​i​(​q​i​) is positive so that agents always want 
to be selected. We did not include an individual rationality constraint because it was 
implied by the limited liability constraint. If the benefit function could take nega-
tive values for low qualities, then the individual rationality constraint would bind in 
a range of qualities. Negative benefit functions could arise, for example, when the 
agent suffers a loss from a project that fails, and the probability of success of the 
project is low. If the benefit functions are always negative, then the individual ratio-
nality constraint implies limited liability. In this case, the problem becomes similar 
to that described in Manelli and Vincent (1995).

Maintaining our assumption that benefit functions increase with quality, we consid-
ered the case where ​b​i​(​q​i​) is negative for low qualities and positive for high qualities. 
In this problem, the individual rationality constraint binds when agents’ projects have 
low quality and the limited liability constraint binds when they have high quality. To 
guarantee that the incentive constraints hold, transfers need to compensate managers 
who want to be selected but are not selected, so that they would not overstate their 
probability of success; and transfers need to compensate managers who do not want to 
be selected but are selected so that they would not understate the quality of their proj-
ect to avoid being selected. In section D of the online Appendix, we formally derive 
the optimal mechanism for this version of the model.

VI.  Related Literature

Our work is related to a large body of literature on auctions and mechanism design. 
In terms of our main application of interest, our work also relates to a literature on 
project selection. The main problem we study is similar to Myerson’s (1981) optimal 
auction design, which maximizes a seller’s utility. His problem is a linear program with 
incentive compatibility and individual rationality (IR) constraints. One important dif-
ference between our problem and Myerson’s is that we consider a limited liability (LL) 
constraint, which, in our model, is stronger than individual rationality, and therefore 
replaces it. We show how the optimal mechanism changes when IR is replaced by LL.

As in Myerson (1981) our solution selects the projects (bidders) with the high-
est “virtual” quality. The virtual quality for each player is a measure of the social 
value of selecting this player, net of the costs of providing truth-telling incentives. 
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Importantly, it is a function of the type and commonly known characteristics of this 
particular player, but not of others.

The exact form of the function that transforms type (quality) into a virtual type in 
our model differs from Myerson’s in two ways. The first is that his virtual valuation 
distorts the social value of selecting a player at the bottom, while our virtual qual-
ity distorts it at the top. The reason for this is that while IR is binding for low types 
(who contemplate on whether or not to participate), LL is binding for high types 
(who are never compensated). The second, more interesting, difference is that in our 
model, each project has its own specific quality threshold above which the virtual 
quality is constant. This interesting feature is not observed in Myerson’s model and 
is the main consequence of replacing IR by LL. As a result, when a project’s quality 
exceeds its threshold, the probability that it gets selected may be constant and less 
than one, which never occurs in Myerson’s model.

Laffont and Robert (1996) and Maskin (2000) study optimal auctions under 
positive commonly-known budget constraints and IR. Laffont and Robert (1996) 
study revenue maximization. Maskin (2000) studies efficient auctions. In addition 
to these constraints, Maskin assumes that players cannot receive funds from the 
seller. One important difference with our work is that, unlike LL in our model, 
their budget constraint is not stronger than IR. Both constraints bind in different 
regions of the type space. The interaction between the two constraints makes these 
models quite complex to analyze in general. While the optimal mechanism can still 
be described as allocating the object to the player with the highest virtual valuation, 
the virtual valuations of the players are jointly determined. Each of them depends 
not only on the player’s type and own observable characteristics but also on the 
observable characteristics of the other players. Laffont and Robert (1996) solve their 
model by restricting attention to the case where the players are ex ante symmetric. 
Maskin (2000) only considers two asymmetric players. Because only LL binds in 
our model, we are able to analyze the general problem of selecting up to m among n 
ex ante asymmetric projects. These authors show (like we do) that the virtual valua-
tion functions are constant at the top. But, because, in our model, the virtual quality 
functions of the projects are determined separately, we can provide an interpretation 
for the quality thresholds and caps on virtual quality that has no counterpart in their 
models. In particular, we relate each project’s quality threshold and virtual quality 
cap to the outside option level at which the cost and benefit of eliciting information 
on the project cancel out (Section III) and to the optimal value of selecting one 
among infinitely many ex ante identical projects (Proposition 2).10

Manelli and Vincent (1995) study the problem of a firm procuring a good when 
the potential sellers have private information on the quality of their good. The buyer 
in their model, as the firm in our model, has a payoff that increases with quality 
and decreases with transfers. An important difference is that in their model, sellers 
incur an opportunity cost when selected, which increases with quality. In contrast, 
in our model, managers benefit from being selected, and more so when quality is 
higher. Their assumption that seller utility decreases with quality makes sense in 

10 A large literature, starting with Che and Gale (1998, 2000) analyze auctions with budgets constraints, where 
bidders hold private information on their budget, which is not the case here.
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applications where the seller finds it is more costly to part from a higher quality 
good that he owns. In the applications we have in mind, the project manager has no 
way to benefit from his good (the project) unless it is financed, and conditional on 
being financed, the manager benefits more from working on a higher quality proj-
ect. Another important difference between our models is that Manelli and Vincent 
(1995) use an individual rationality constraint, while our model uses the limited 
liability constraint. We believe that the limited liability constraint is appealing for 
some application. It might not be feasible for a company to extract funds from an 
employee researcher. Note that because the benefit function is nonnegative, the LL 
constraint in our model is a stronger constraint than the IR constraint would be.

Combined, these differences in our models result in different optimal mecha-
nisms. In our model, the probability of project selection is nondecreasing in project 
quality, while in Manelli and Vincent (1995) (the expected value of) the probability 
of project selection is nonincreasing in quality. Manelli and Vincent (1995) find con-
ditions under which either a sequential offer institution or an auction are optimal, 
these are not optimal mechanisms in our setting, except when a constant mechanism 
is optimal.

Finally, we note that our solution concept (using dominant strategy incen-
tive compatibility) is also different than Manelli and Vincent (1995) (who use 
Bayesian incentive compatibility). However, it can be shown (see proof in the online 
Appendix) that the dominant strategy incentive compatible optimal mechanism also 
solves the problem with Bayesian incentive compatibility constraints. Thus, this dif-
ferent approach does not contribute to the differences in results.

Recently, a few papers studied the problem of choosing one of multiple proj-
ects, in the presence of asymmetric information. In Armstrong and Vickers (2010), 
the principal and the agent have different preference ordering over projects, the 
principal delegates the project choice to the agent, the principal can influence 
the agent’s behavior by specifying the set of projects from which the agent can 
choose.11 In Che, Dessein, and Kartik (2010) the preferences of the principal 
and agent are the same, except that the agent does not value the principal’s out-
side option. Projects have observed and unobserved characteristics. The agent 
sends cheap talk messages, and the principal has no commitment power. They find 
that the agent biases his recommendation toward better looking projects. These 
papers differ from ours in several important ways, in particular they assume that 
a single agent holds information about the set of all projects, while in our model 
there are multiple agents. Additionally, their analysis does not allow transfers. In 
Mylovanov and Zapechelnyuk (2013), a firm needs to select among agents who 
hold private information about their value to the decision maker and want to be 
selected. There are no transfers, but the firm can impose ex post a cost on the 
selected agent, once his type is revealed. An important question they address is 
the minimal number of agents that the firm should allow to enter the mechanism, 
in order to achieve the optimal value.

11 Nocke and Whinston’s (2013) model is related to Armstrong and Vickers (2010), but focuses on mergers.
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There is a large literature that studies other aspects of project selection, in par-
ticular, the incidence of moral hazard issues on the selection process. Some con-
sider moral hazard before the selection process, when effort must be invested to 
improve the projects (Sappington 1982). Others study moral hazard at the selec-
tion stage, when information about projects must be acquired at a cost (Lambert 
1986; Shin 2008). Finally, others consider moral hazard after the selection is made, 
when the selected project is undertaken. Moral hazard after the selection process 
distorts incentives to reveal private information on quality at the selection stage 
(Antle and Eppen 1985; Harris and Raviv 1996; Zhang 1997). In this paper, we 
abstract from moral hazard considerations and focus on adverse selection alone.

VII.  Concluding Remarks

Private companies as well as government agencies often face the need to decide 
how to allocate limited resources to projects. The information that is needed to make 
decisions may be in the hands of project managers whose interests are typically 
not aligned with those of the firm. Project managers have more to gain if their own 
project is selected.

We derived an optimal mechanism to acquire information and decide which of a 
given set of projects to select. If the firm were fully informed, it would always choose 
the highest quality projects, but in the presence of adverse selection, when information 
acquisition is costly, this is no longer true. In the optimal mechanism, there is a region 
of reported probabilities in which more managers than can be selected report high qual-
ities, such that in this region project selection is not sensitive to the project qualities. 
In the symmetric case, projects in this region are randomly selected. In the asymmet-
ric model, a constant deterministic selection is made. Hence, the optimal mechanism 
involves inefficient project selection, where a lower quality project can be selected over 
a high quality one. This practice allows the firm to save on costs of eliciting information 
(the incentive transfers) as it reduces the incentive to overstate project qualities.

Information asymmetry in our analysis is of an adverse selection nature. Because 
managers compete for resources and want their own project to be selected, the firm 
must worry about managers overstating the quality of their project. In contrast in a 
situation with moral hazard and absent competition between managers, understating 
the quality of the project might be a concern as it can help hide low effort. In a moral 
hazard model, when transfers are used to induce effort, they typically reward suc-
cess, while, in our setting, the firm might reward managers that are not selected to 
ensure truth-telling and achieve better allocation of resources. The optimal mecha-
nism in our model may reward good outcomes of a manager who reported low qual-
ity, when state dependent mechanisms are possible.

A crucial feature of our model is that the firm is facing a selection from a 
prequalified pool of candidate projects. The firm is assumed to have some infor-
mation about the distribution of qualities of each of the projects, and the number 
of candidates is fixed. If anyone could apply for the funds, a mechanism like we 
found would attract low-quality candidates who would want to enter the competi-
tion for funds, not in hope of winning, but rather with the intention of loosing and 
collecting a consolation prize—the transfers that reward truthful disclose. Facing 
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such a pool of low-expected quality candidates, not selecting any projects might be 
the optimal solution. A fixed pool of prequalified project managers can arise, for 
example, in a private company where project managers are prescreened employ-
ees of the company; when application for funding requires sufficient knowledge 
and there is a limited number of candidates with the capabilities to engage in a rel-
evant research project (as is often the case with defense contracting); or as a final 
stage of a research funding process when the firm was able to employ a two- (or 
more) stage procedure with early stages screening project managers whose quality 
comes from unfavorable distributions.

Appendix: Proofs

Proof of Lemma 1:
By (7), we know that for q° < ​G​i​​( ​​q​i​ _​ )​, ​a​ i​ ∗​​( q° )​ = ​​q​i​ _​. Substitution into (6), we 

find that in this range, the function ​V ​∗​​( q° )​ = E​[ ​q​i​ ]​, and it does not depend on 
q°. Thus, ​V ​∗​​( q° )​ − q° is strictly decreasing in q°. Similarly, by (6) and (7), for 
q° > ​G​i​​( ​

_
 ​q​i​ ​ )​, we have ​V ​∗​​( q° )​ = −​b​i​​( ​

_
 ​q​i​ ​ )​ + q°, and so ​V ​∗​​( q° )​ − q° = −​b​i​​( ​

_
 ​q​i​ ​ )​ is a 

negative constant. For q° ∈ ​[ ​G​i​​( ​​q​i​ _​ )​, ​G​i​​( ​
_
 ​q​i​ ​ )​ ]​, from the envelope theorem, we have 

V​ ​∗​′​( q° )​ = ∂V​( a, q° )​/∂  q° = F​( ​a​ i​ ∗​​( q° )​ )​ < 1. The difference ​V​ ∗​​( q° )​ − q° is decreas-
ing in q° in this interval as well. Hence, everywhere on ℝ this difference is either 
strictly decreasing or it equals a negative constant, which implies that ​V ​∗​​( q° )​ − q° 
equals 0 at most once in ℝ.

For low values of the outside option, q° < E​[ ​q​i​ ]​, we have ​V ​∗​​( q° )​ ≥ V​( ​q​i​, q° )​  
= E​[ ​q​i​ ]​ > q°, i.e., the optimal threshold mechanism dominates the outside option. 
For high values of the outside option, q° ≥ ​G​i​​( ​

_
 ​q​i​ ​ )​, we have ​a​ i​ ∗​​( q° )​ =  ​_ ​q​i​ ​. In this case, ​

V ​∗​​( q° )​ = −​b​i​​( ​
_
 ​q​i​ ​ )​ + q° < q°. Thus, for such values, the outside option mechanism 

dominates the optimal threshold mechanism. By the intermediate values theorem, 
there is a value of the outside option in the interval ​[ E​[ ​q​i​ ]​, ​G​i​​( ​

_
 ​q​i​ ​ )​ ]​ for which the firm 

is indifferent between the outside option and the optimal threshold mechanism. By 
the previous paragraph, this value is unique in ℝ.

Proof of proposition 1:
Suppose that ​x​i​ = ​g​ i​ °​ = E​( ​q​i​ )​ for all ​q​i​, then in particular for ​​q​i​ _​ we have 

​x​i​ = min ​{ ​​q​i​ _​ + ​b​i​​( ​​q​i​ _​ )​, E​( ​q​i​ )​ }​ = E​( ​q​i​ )​. This implies that ​​q​i​ _​ + ​b​i​​( ​​q​i​ _​ )​ ≥ E​( ​q​i​ )​, and 

thus, ​b​i​​( ​​q​i​ _​ )​ ≥ E​( ​q​i​ )​ − ​​q​i​ _​. Conversely, if ​b​i​​( ​​q​i​ _​ )​ ≥ E​( ​q​i​ )​ − ​​q​i​ _​, then by (7), ​a​ i​ ∗​​( E​( ​q​i​ )​ )​  
= ​​q​i​ _​ and ​V​ ∗​​( E​( ​q​i​ )​ )​ = V​( ​​q​i​ _​, E​( ​q​i​ )​ )​ = E​( ​q​i​ )​. Hence, ​g​ i​ °​ = E​( ​q​i​ )​, and ​b​i​​( ​​q​i​ _​ )​  
≥ ​g​ i​ °​ − ​​q​i​ _​. Therefore, for all ​q​i​, G​( ​q​i​ )​ ≥ G​( ​​q​i​ _​ )​ = ​​q​i​ _​ + ​b​i​​( ​​q​i​ _​ )​ ≥ ​g​ i​ °​, which implies 
by definition of ​x​i​ that ​x​i​ = ​g​ i​ °​ for all ​q​i​. Combining these results, ​x​i​ = ​g​ i​ °​ = E​( ​q​i​ )​ 
for all ​q​i​.

The following results are useful in the proof of Theorem 1.

Lemma A1: Let the payoff of manager i in the optimal mechanism be

(A1)	​ M​i​​( q )​  = ​ t​i​(q)  + ​ b​i​(q)​p​i​(q).
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The target function in (1) can be written as

	​ E​q​​[ ​ ∑ ​ 
i=1

  ​ 
n

  ​​[ ​G​i​(​q​i​)​p​i​(q)  − ​ M​i​(​
_
 ​q​i​ ​, ​q​−i​) ]​ ]​.

Proof of LEMMA A1:
We apply the “Mirrlees trick” (see Mirrlees 1974 and Fudenberg and Tirole 1992) 

to prove this lemma. The series of transformations in this proof are familiar for this 
type of model, but we include them here for completeness.

Step 1: Consider first the incentive compatibility constraints (4), which we refer 
to as I​C​i​. The utility of project manager i under a mechanism in which he reports 
truthfully is ​M​i​​( q )​, which was defined in (A1). His utility of misreporting a type 
​q​ i​ ′​ equals

	​ t​i​(​q​ i​ ′​, ​q​−i​)  + ​ b​i​(​q​i​)​p​i​(​q​ i​ ′​, ​q​−i​)  = ​ M​i​(​q​ i​ ′​ , ​q​−i​)  + ​ ( ​b​i​(​q​i​) − ​b​i​​( ​q​ i​ ′​   )​ )​ ​p​i​(​q​ i​ ′​ , ​q​−i​).

From the incentive compatibility constraint, we know that

	​ M​i​​( q )​  ≥ ​ M​i​(​q​ i​ ′​, ​q​−i​)  + ​ ( ​b​i​(​q​i​) − ​b​i​​( ​q​ i​ ′​ )​ )​ ​p​i​(​q​ i​ ′​, ​q​−i​),

i.e.,

	​ M​i​​( ​q​ i​ ′​, ​q​−i​ )​ − ​M​i​​( q )​  ≤ ​ ( ​b​i​(​q​ i​ ′​ )  − ​ b​i​​( ​q​i​ )​ )​ ​p​i​(​q​ i​ ′​ , ​q​−i​).

Using the last inequality twice (once switching the roles of ​q​i​ and ​q​ i​ ′​ ), we get

(A2) ​ ( ​b​i​(​q​ i​ ′​ )  −  ​b​i​​( ​q​i​ )​ )​ ​p​i​(q) ≤ ​M​i​​( ​q​ i​ ′​, ​q​−i​ )​  −  ​M​i​​( q )​ ≤ ​( ​b​i​(​q​ i​ ′​ )  −  ​b​i​​( ​q​i​ )​ )​ ​p​i​(​q​ i​ ′​, ​q​−i​).

Step 2: Consider now two qualities ​q​i​, ​q​ i​ ′​, such that ​b​i​​( ​q​i​ )​ < ​b​i​​( ​q​ i​ ′​ )​ and fix ​q​−i​, 
then ​p​i​​( ​q​i​, ​q​−i​ )​ ≤ ​p​i​​( ​q​ i​ ′​, ​q​−i​ )​ holds.12 Indeed, by (A2), we have

	​ [ ​b​i​(​q​ i​ ′​ ) − ​b​i​(​q​i​) ]​ ​[ ​p​i​(​q​ i​ ′​, ​q​−i​)  − ​ p​i​(q) ]​  ≥  0.

Because ​b​i​(​q​ i​ ′​ ) − ​b​i​(​q​i​) > 0, this implies ​p​i​(q) ≤ ​p​i​(​q​ i​ ′​, ​q​−i​).

Step 3: Dividing (A2) by ​q​ i​ ′​ − ​q​i​ and taking the limit as ​q​ i​ ′​ → ​q​i​, we find that

	​ 
∂​M​i​(q)
 _ 

∂​q​i​
 ​   = ​ b​ i​ ′​​( ​q​i​ )​ ​p​i​(q).

12 Under the assumption that b​( · )​ is strictly increasing, one can show that I​C​i​ holds if and only if ​p​i​​( ·, · )​ is 
nondecreasing in ​q​i​ and transfers satisfy the formula of Lemma 1. This result is classic for this type of mechanism 
design model (e.g., see Myerson 1981). Here, the analysis is complicated by the fact that b​( · )​ can be constant on 
a subset of its domain.
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The equality holds almost everywhere, and the right-hand side is continuous in ​q​i​ 
almost everywhere.13 From the Fundamental Theorem of Calculus, we obtain

	​ M​i​​( ​q​i​, ​q​−i​ )​  = ​ M​i​(​
_
 ​q​i​ ​, ​q​−i​)  − ​ ∫  ​ 

​q​i​
​ 

​_ ​q​i​ ​
​ ​b​ i​ ′​(​​ q ​​i​)​p​i​(​​ q ​​i​, ​q​−i​) d  ​​ q ​​i​,

substituting this into (A1) and rearranging yields the following expression:

(A3)	​ t​i​(q)  = −​( ​b​i​(​q​i​)​p​i​(q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) + ​∫  ​ 

​q​i​
​ 

​_ ​q​i​ ​
​ ​b​ i​ ′​(​​ q ​​i​)​p​i​(​​ q ​​i​, ​q​−i​) d​​ q ​​i​ )​.

Step 4: Fix ​q​−i​. We use integration by parts to show that

(A4) ​ ∫ ​ 
​​q​i​ _​
​ 

​_ ​q​i​ ​
​​( ​∫​ 

​q​i​
​ 

 ​_ ​q​i​ ​
​​b​ i​ ′​(​​ q ​​i​)​p​i​(​​ q ​​i​, ​q​−i​)d​​ q ​​i​ )​ f (​q​i​)d​q​i​  = ​ ∫  ​ 

​​q​i​ _​
​ 

​_ ​q​i​ ​
​​b​ i​ ′​(​q​i​)​p​i​(​q​i​, ​q​−i​)​F​i​​( ​q​i​ )​ d​q​i​.

Step 5: Now, we substitute the transfers (A3) into the expected value of the profit 
made from agent i, conditional on ​q​−i​  :

​E​​q​i​​​[ ​q​i​ ​p​i​(q) − ​t​i​​( q )​ ]​

    = ​E​​q​i​​​[ ​q​i​ ​p​i​(q) + ​( ​b​i​(​q​i​)​p​i​  (q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) + ​∫  ​ 

​q​i​
​ 

​_ ​q​i​ ​
​​b​ i​ ′​(​​ q ​​i​)​p​i​(​​ q ​​i​ , ​q​−i​) d​​ q ​​i​ )​ ]​

    = ​E​​q​i​​​[ ​q​i​ ​p​i​(q) + ​b​i​(​q​i​)​p​i​(q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) ]​  

	 + ​ ∫  ​ 
​​q​i​ _​
​ 

​_ ​q​i​ ​
​​( ​∫  ​ 

​q​i​
​ 

​_ ​q​i​ ​
​​b​ i​ ′​(​​ q ​​i​)​p​i​(​​ q ​​i​, ​q​−i​)d​​ q ​​i​ )​ f  (​q​i​)  d​q​i​

    = ​ E​​q​i​​​[ ​q​i​ ​p​i​(q) + ​b​i​(​q​i​)​p​i​(q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) ]​  + ​ ∫  ​ 

​​q​i​ _​
​ 

​_ ​q​i​ ​
​​b​ i​ ′​(​q​i​)​p​i​(​q​i  ​, ​q​−i​)​F​i​​( ​q​i​ )​ d​q​i​

    = ​ E​​q​i​​​[ ​G​i​​( ​q​i​ )​ ​p​i​(q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) ]​.

Taking the expectation over ​q​−i​ and adding up over i yields the desired equality.

Lemma A2: At any mechanism that satisfies the constraints, the following holds 
for each agent i ∈ :

	​ E​​q​i​​​[ ​G​i​(​q​i​)​p​i​(q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) ]​  ≤ ​ E​​q​i​​ ​[ min ​{ ​G​i​​( ​q​i​ )​, ​g​ i​ °​ }​ ​p​i​​( q )​ ]​.

13 The limit of ​ 
​( b(​q​ i​ ′​) − b​( ​q​i​ )​ )​

  _ ​q​ i​ ′​ − ​q​i​
  ​ ​p​i​(​q​ i​ ′​, ​q​−i​) exists and equals ​b′​​( ​q​i​ )​ ​p​i​(​q​ i​ ′​, ​q​−i​) for almost all ​q​i​. Indeed, at any point 

of the set ​{ ​q​i​ : ​b′​​( ​q​i​ )​ = 0 }​, the limit exists and equals 0, since ​p​i​​( · )​ is bounded. As for the other points, a corollary 
of Step 2 is that ​p​i​​( · )​ is locally nondecreasing at any ​q​i​, that is, such that ​b′​​( ​q​i​ )​ > 0, and thus is continuous almost 
everywhere in the set ​{ ​q​i​ : ​b′​​( ​q​i​ )​ > 0 }​.
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Proof of lemma A2:
Let q be a vector of qualities. First, by I​C​i​ we have ​t​i​​( q )​ + ​b​i​​( ​

_
 ​q​i​ ​ )​ ​p​i​​( q )​ ≤ 

​M​i​(​
_
 ​q​i​ ​, ​q​−i​), otherwise agent i’s type ​

_
 ​q​i​ ​ would have an incentive to misreport as ​q​i​. By 

L​L​i​, we have ​t​i​​( q )​ ≥ 0, thus for all q,

(A5)	​ b​i​​( ​
_
 ​q​i​ ​ )​ ​p​i​​( q )​  ≤ ​ M​i​(​

_
 ​q​i​ ​, ​q​−i​).

For all ​q​i​ > ​a​ i​ ∗​​( ​g​ i​ °​ )​ we have ​G​i​​( ​q​i​ )​ > ​g​ i​ °​, where ​a​ i​ ∗​​( · )​ is defined in (7). Therefore,

​{ ​∫  ​ 
​a​ i​ ∗​​( ​g​ i​ °​ )​

​ 
​_ ​q​i​ ​
  ​ ​G​i​(​q​i​)​p​i​(q) ​f​i​(​q​i​) d​q​i​ − ​M​i​(​

_
 ​q​i​ ​, ​q​−i​) }​  − ​ { ​∫ ​ 

​a​ i​ ∗​​( ​g​ i​ °​ )​
​ 

​_ ​q​i​ ​
  ​ ​g​ i​ °​ ​p​i​(q) ​f​i​(​q​i​) d​q​i​ }​

    = ​ ∫  ​ 
​a​ i​ ∗​​( ​g​ i​ °​ )​

​ 
​_ ​q​i​ ​
  ​​( ​G​i​(​q​i​) − ​g​ i​ °​ )​ ​p​i​(q) ​f​i​(​q​i​) d​q​i​ − ​M​i​(​

_
 ​q​i​ ​ , ​q​−i​)

    ≤ ​ [ ​∫  ​ 
​a​ i​ ∗​​( ​g​ i​ °​ )​

​ 
​_ ​q​i​ ​
  ​​( ​G​i​(​q​i​) − ​g​ i​ °​ )​ ​f​i​(​q​i​) d​q​i​ − ​b​i​​( ​

_
 ​q​i​ ​ )​ ]​ ​ ​M​i​(​

_
 ​q​i​ ​, ​q​−i​) _ 

​b​i​​( ​
_
 ​q​i​ ​ )​
 ​   =  0.

The inequality between the second and third lines is an implication of the constraint 
(A5). The last equality holds by definition of the cap ​g​ i​ °​ (in (9)). Therefore,

	​ ∫  ​ 
​a​ i​ ∗​​( ​g​ i​ °​ )​

​ 
​_ ​q​i​ ​
  ​​G​i​(​q​i​)​p​i​(q) ​f​i​(​q​i​) d​q​i​ − ​M​i​(​

_
 ​q​i​ ​, ​q​−i​)  ≤ ​ ∫  ​ 

​a​ i​ ∗​​( ​g​ i​ °​ )​
​ 

​_ ​q​i​ ​
  ​ ​g​ i​ °​ ​p​i​(q) ​f​i​(​q​i​) d​q​i​,

which further implies

    ​    ∫  ​ 
​​q​i​ _​
​ 

​_ ​q​i​ ​
​​G​i​(​q​i​)​p​i​(q) ​f​i​(​q​i​) d​q​i​ − ​M​i​(​

_
 ​q​i​ ​, ​q​−i​)

            ≤ ​ ∫  ​ 
​​q​i​ _​
​ 

​a​ i​ ∗​​( ​g​ i​ °​ )​
​​G​i​(​q​i​)​p​i​(q) ​f​i​(​q​i​) d​q​i​  + ​ ∫  ​ 

​a​ i​ ∗​​( ​g​ i​ °​ )​
​ 

​_ ​q​i​ ​
  ​​ g​ i​ °​ ​p​i​(q) ​f​i​(​q​i​) d​q​i​

            = ​ E​​q​i​​ ​[ min ​{ ​G​i​​( ​q​i​ )​, ​g​ i​ °​ }​ ​p​i​​( q )​ ]​.

The last equality holds because, for all ​q​i​ < ​a​ i​ ∗​​( ​g​ i​ °​ )​, we have ​G​i​​( ​q​i​ )​ < ​g​ i​ °​  , and for 
all ​q​i​ > ​a​ i​ ∗​​( ​g​ i​ °​ )​, we have ​g​ i​ °​ > ​G​i​​( ​q​i​ )​.
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Proof of theorem 1:
The profit of the firm at some arbitrary mechanism satisfying (2)–(4) equals

  ​  E​q​​[ ​∑​ 
i=1

 ​ 
n

  ​ ​[ ​G​i​(​q​i​)​p​i​(q) − ​M​i​(​
_
 ​q​i​ ​, ​q​−i​) ]​ ]​

        ≤ ​ E​q​​[ ​∑​ 
i=1

 ​ 
n

  ​ min ​{ ​G​i​​( ​q​i​ )​, ​g​ i​ °​ }​ ​p​i​​( q )​ ]​
        ≤ ​ E​q​[​S​m​(min ​{ ​G​1​​( ​q​1​ )​, ​g​ 1​ ° ​ }​, … , min ​{ ​G​n​​( ​q​n​ )​, ​g​ n​ ° ​ }​, 0, … , 0)]	 3
	 m times

	 = ​ E​q​​[ ​S​m​​( x(q) )​ ]​,

where the first expression for the profit was derived in Lemma A1; the first inequal-
ity holds by Lemma A2; and the second holds because of the feasibility constraints 
(2). Under the proposed mechanism, all the weak inequalities above hold as equali-
ties, thus the mechanism achieves the optimal profit. The mechanism also satisfies 
the constraints (2)–(4), therefore it is optimal.

Proof of Proposition 2:
Recall ​x​i​ = min ​{ ​G​i​​( ​q​i​ )​, ​g​ i​ °​ }​. Note that Pr ​( ​x​i​ ≤ ​

_
 ​g​ i​ °​ ​ )​ = 1. Let ε > 0. We have

        Pr ​( ​x​i​ ≥ ​
_
 ​g​ i​ °​ ​ − ​ ε _ m ​ )​

            =  Pr​( ​G​i​​( ​q​i​ )​ ≥ ​
_
 ​g​ i​ °​ ​ − ​ ε _ m ​ | ​g​ i​ °​ ≥ ​

_
 ​g​ i​ °​ ​ − ​ ε _ m ​ )​  Pr​( ​g​ i​ °​ ≥ ​

_
 ​g​ i​ °​ ​ − ​ ε _ m ​ )​

            ≥  Pr​( ​G​i​​( ​q​i​ )​ ≥ ​
_
 ​g​ i​ °​ ​ − ​ ε _ m ​ | ​g​ i​ °​ = ​

_
 ​g​ i​ °​ ​ − ​ ε _ m ​ )​  Pr​( ​g​ i​ °​ ≥ ​

_
 ​g​ i​ °​ ​ − ​ ε _ m ​ )​.

The last inequality is an implication of first-order stochastic dominance. Both terms 
of the product in the last line are positive. Therefore Pr ​( ​x​i​ ≥ ​

_
 ​g​ i​ °​ ​ − ε/m )​ > 0. 

Since the ​x​i​ are independently and identically distributed, by the law of large num- 

bers li​m​n→+∞​ Pr ​( ​x​​( m )​​​( q )​ ≥ ​
_
 ​g​ i​ °​ ​ − ε/m )​ = 1. Therefore li​m​n→+∞​ Pr ​( ​| ​S​m​​( x​( q )​ )​ − 

m  ​
_
 ​g​ i​ °​ ​ |​ ≤ ε )​ = 1, as needed.
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